Evaluate
\frac{50-110x-65x^{2}-9x^{3}-9x^{4}-x^{5}}{2\left(x^{2}-25\right)\left(x^{2}-1\right)}
Expand
-\frac{x^{5}+9x^{4}+9x^{3}+65x^{2}+110x-50}{2\left(x^{2}-25\right)\left(x^{2}-1\right)}
Graph
Share
Copied to clipboard
\frac{x^{2}+5x}{2x}\left(\frac{x}{x^{2}-1}-\frac{x}{x-5}\right)+\frac{5}{5+x}
Combine 3x and 2x to get 5x.
\frac{x\left(x+5\right)}{2x}\left(\frac{x}{x^{2}-1}-\frac{x}{x-5}\right)+\frac{5}{5+x}
Factor the expressions that are not already factored in \frac{x^{2}+5x}{2x}.
\frac{x+5}{2}\left(\frac{x}{x^{2}-1}-\frac{x}{x-5}\right)+\frac{5}{5+x}
Cancel out x in both numerator and denominator.
\frac{x+5}{2}\left(\frac{x}{\left(x-1\right)\left(x+1\right)}-\frac{x}{x-5}\right)+\frac{5}{5+x}
Factor x^{2}-1.
\frac{x+5}{2}\left(\frac{x\left(x-5\right)}{\left(x-5\right)\left(x-1\right)\left(x+1\right)}-\frac{x\left(x-1\right)\left(x+1\right)}{\left(x-5\right)\left(x-1\right)\left(x+1\right)}\right)+\frac{5}{5+x}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(x-1\right)\left(x+1\right) and x-5 is \left(x-5\right)\left(x-1\right)\left(x+1\right). Multiply \frac{x}{\left(x-1\right)\left(x+1\right)} times \frac{x-5}{x-5}. Multiply \frac{x}{x-5} times \frac{\left(x-1\right)\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}.
\frac{x+5}{2}\times \frac{x\left(x-5\right)-x\left(x-1\right)\left(x+1\right)}{\left(x-5\right)\left(x-1\right)\left(x+1\right)}+\frac{5}{5+x}
Since \frac{x\left(x-5\right)}{\left(x-5\right)\left(x-1\right)\left(x+1\right)} and \frac{x\left(x-1\right)\left(x+1\right)}{\left(x-5\right)\left(x-1\right)\left(x+1\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{x+5}{2}\times \frac{x^{2}-5x-x^{3}-x^{2}+x^{2}+x}{\left(x-5\right)\left(x-1\right)\left(x+1\right)}+\frac{5}{5+x}
Do the multiplications in x\left(x-5\right)-x\left(x-1\right)\left(x+1\right).
\frac{x+5}{2}\times \frac{x^{2}-4x-x^{3}}{\left(x-5\right)\left(x-1\right)\left(x+1\right)}+\frac{5}{5+x}
Combine like terms in x^{2}-5x-x^{3}-x^{2}+x^{2}+x.
\frac{\left(x+5\right)\left(x^{2}-4x-x^{3}\right)}{2\left(x-5\right)\left(x-1\right)\left(x+1\right)}+\frac{5}{5+x}
Multiply \frac{x+5}{2} times \frac{x^{2}-4x-x^{3}}{\left(x-5\right)\left(x-1\right)\left(x+1\right)} by multiplying numerator times numerator and denominator times denominator.
\frac{\left(x+5\right)\left(x^{2}-4x-x^{3}\right)\left(x+5\right)}{2\left(x-5\right)\left(x-1\right)\left(x+1\right)\left(x+5\right)}+\frac{5\times 2\left(x-5\right)\left(x-1\right)\left(x+1\right)}{2\left(x-5\right)\left(x-1\right)\left(x+1\right)\left(x+5\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 2\left(x-5\right)\left(x-1\right)\left(x+1\right) and 5+x is 2\left(x-5\right)\left(x-1\right)\left(x+1\right)\left(x+5\right). Multiply \frac{\left(x+5\right)\left(x^{2}-4x-x^{3}\right)}{2\left(x-5\right)\left(x-1\right)\left(x+1\right)} times \frac{x+5}{x+5}. Multiply \frac{5}{5+x} times \frac{2\left(x-5\right)\left(x-1\right)\left(x+1\right)}{2\left(x-5\right)\left(x-1\right)\left(x+1\right)}.
\frac{\left(x+5\right)\left(x^{2}-4x-x^{3}\right)\left(x+5\right)+5\times 2\left(x-5\right)\left(x-1\right)\left(x+1\right)}{2\left(x-5\right)\left(x-1\right)\left(x+1\right)\left(x+5\right)}
Since \frac{\left(x+5\right)\left(x^{2}-4x-x^{3}\right)\left(x+5\right)}{2\left(x-5\right)\left(x-1\right)\left(x+1\right)\left(x+5\right)} and \frac{5\times 2\left(x-5\right)\left(x-1\right)\left(x+1\right)}{2\left(x-5\right)\left(x-1\right)\left(x+1\right)\left(x+5\right)} have the same denominator, add them by adding their numerators.
\frac{-4x^{4}+x^{3}-20x^{2}-x^{5}-20x^{3}+5x^{2}-100x-5x^{4}+10x^{3}-10x-50x^{2}+50}{2\left(x-5\right)\left(x-1\right)\left(x+1\right)\left(x+5\right)}
Do the multiplications in \left(x+5\right)\left(x^{2}-4x-x^{3}\right)\left(x+5\right)+5\times 2\left(x-5\right)\left(x-1\right)\left(x+1\right).
\frac{-9x^{4}-9x^{3}-65x^{2}-x^{5}-110x+50}{2\left(x-5\right)\left(x-1\right)\left(x+1\right)\left(x+5\right)}
Combine like terms in -4x^{4}+x^{3}-20x^{2}-x^{5}-20x^{3}+5x^{2}-100x-5x^{4}+10x^{3}-10x-50x^{2}+50.
\frac{-9x^{4}-9x^{3}-65x^{2}-x^{5}-110x+50}{2x^{4}-52x^{2}+50}
Expand 2\left(x-5\right)\left(x-1\right)\left(x+1\right)\left(x+5\right).
\frac{x^{2}+5x}{2x}\left(\frac{x}{x^{2}-1}-\frac{x}{x-5}\right)+\frac{5}{5+x}
Combine 3x and 2x to get 5x.
\frac{x\left(x+5\right)}{2x}\left(\frac{x}{x^{2}-1}-\frac{x}{x-5}\right)+\frac{5}{5+x}
Factor the expressions that are not already factored in \frac{x^{2}+5x}{2x}.
\frac{x+5}{2}\left(\frac{x}{x^{2}-1}-\frac{x}{x-5}\right)+\frac{5}{5+x}
Cancel out x in both numerator and denominator.
\frac{x+5}{2}\left(\frac{x}{\left(x-1\right)\left(x+1\right)}-\frac{x}{x-5}\right)+\frac{5}{5+x}
Factor x^{2}-1.
\frac{x+5}{2}\left(\frac{x\left(x-5\right)}{\left(x-5\right)\left(x-1\right)\left(x+1\right)}-\frac{x\left(x-1\right)\left(x+1\right)}{\left(x-5\right)\left(x-1\right)\left(x+1\right)}\right)+\frac{5}{5+x}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(x-1\right)\left(x+1\right) and x-5 is \left(x-5\right)\left(x-1\right)\left(x+1\right). Multiply \frac{x}{\left(x-1\right)\left(x+1\right)} times \frac{x-5}{x-5}. Multiply \frac{x}{x-5} times \frac{\left(x-1\right)\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}.
\frac{x+5}{2}\times \frac{x\left(x-5\right)-x\left(x-1\right)\left(x+1\right)}{\left(x-5\right)\left(x-1\right)\left(x+1\right)}+\frac{5}{5+x}
Since \frac{x\left(x-5\right)}{\left(x-5\right)\left(x-1\right)\left(x+1\right)} and \frac{x\left(x-1\right)\left(x+1\right)}{\left(x-5\right)\left(x-1\right)\left(x+1\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{x+5}{2}\times \frac{x^{2}-5x-x^{3}-x^{2}+x^{2}+x}{\left(x-5\right)\left(x-1\right)\left(x+1\right)}+\frac{5}{5+x}
Do the multiplications in x\left(x-5\right)-x\left(x-1\right)\left(x+1\right).
\frac{x+5}{2}\times \frac{x^{2}-4x-x^{3}}{\left(x-5\right)\left(x-1\right)\left(x+1\right)}+\frac{5}{5+x}
Combine like terms in x^{2}-5x-x^{3}-x^{2}+x^{2}+x.
\frac{\left(x+5\right)\left(x^{2}-4x-x^{3}\right)}{2\left(x-5\right)\left(x-1\right)\left(x+1\right)}+\frac{5}{5+x}
Multiply \frac{x+5}{2} times \frac{x^{2}-4x-x^{3}}{\left(x-5\right)\left(x-1\right)\left(x+1\right)} by multiplying numerator times numerator and denominator times denominator.
\frac{\left(x+5\right)\left(x^{2}-4x-x^{3}\right)\left(x+5\right)}{2\left(x-5\right)\left(x-1\right)\left(x+1\right)\left(x+5\right)}+\frac{5\times 2\left(x-5\right)\left(x-1\right)\left(x+1\right)}{2\left(x-5\right)\left(x-1\right)\left(x+1\right)\left(x+5\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 2\left(x-5\right)\left(x-1\right)\left(x+1\right) and 5+x is 2\left(x-5\right)\left(x-1\right)\left(x+1\right)\left(x+5\right). Multiply \frac{\left(x+5\right)\left(x^{2}-4x-x^{3}\right)}{2\left(x-5\right)\left(x-1\right)\left(x+1\right)} times \frac{x+5}{x+5}. Multiply \frac{5}{5+x} times \frac{2\left(x-5\right)\left(x-1\right)\left(x+1\right)}{2\left(x-5\right)\left(x-1\right)\left(x+1\right)}.
\frac{\left(x+5\right)\left(x^{2}-4x-x^{3}\right)\left(x+5\right)+5\times 2\left(x-5\right)\left(x-1\right)\left(x+1\right)}{2\left(x-5\right)\left(x-1\right)\left(x+1\right)\left(x+5\right)}
Since \frac{\left(x+5\right)\left(x^{2}-4x-x^{3}\right)\left(x+5\right)}{2\left(x-5\right)\left(x-1\right)\left(x+1\right)\left(x+5\right)} and \frac{5\times 2\left(x-5\right)\left(x-1\right)\left(x+1\right)}{2\left(x-5\right)\left(x-1\right)\left(x+1\right)\left(x+5\right)} have the same denominator, add them by adding their numerators.
\frac{-4x^{4}+x^{3}-20x^{2}-x^{5}-20x^{3}+5x^{2}-100x-5x^{4}+10x^{3}-10x-50x^{2}+50}{2\left(x-5\right)\left(x-1\right)\left(x+1\right)\left(x+5\right)}
Do the multiplications in \left(x+5\right)\left(x^{2}-4x-x^{3}\right)\left(x+5\right)+5\times 2\left(x-5\right)\left(x-1\right)\left(x+1\right).
\frac{-9x^{4}-9x^{3}-65x^{2}-x^{5}-110x+50}{2\left(x-5\right)\left(x-1\right)\left(x+1\right)\left(x+5\right)}
Combine like terms in -4x^{4}+x^{3}-20x^{2}-x^{5}-20x^{3}+5x^{2}-100x-5x^{4}+10x^{3}-10x-50x^{2}+50.
\frac{-9x^{4}-9x^{3}-65x^{2}-x^{5}-110x+50}{2x^{4}-52x^{2}+50}
Expand 2\left(x-5\right)\left(x-1\right)\left(x+1\right)\left(x+5\right).
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}