Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(x^{2}+2xy+y^{2}\right)\left(xy-4x+3y-12\right)}{\left(3y-12\right)\left(7x+7y\right)}
Divide \frac{x^{2}+2xy+y^{2}}{3y-12} by \frac{7x+7y}{xy-4x+3y-12} by multiplying \frac{x^{2}+2xy+y^{2}}{3y-12} by the reciprocal of \frac{7x+7y}{xy-4x+3y-12}.
\frac{\left(y-4\right)\left(x+3\right)\left(x+y\right)^{2}}{3\times 7\left(y-4\right)\left(x+y\right)}
Factor the expressions that are not already factored.
\frac{\left(x+3\right)\left(x+y\right)}{3\times 7}
Cancel out \left(y-4\right)\left(x+y\right) in both numerator and denominator.
\frac{x^{2}+xy+3x+3y}{21}
Expand the expression.
\frac{\left(x^{2}+2xy+y^{2}\right)\left(xy-4x+3y-12\right)}{\left(3y-12\right)\left(7x+7y\right)}
Divide \frac{x^{2}+2xy+y^{2}}{3y-12} by \frac{7x+7y}{xy-4x+3y-12} by multiplying \frac{x^{2}+2xy+y^{2}}{3y-12} by the reciprocal of \frac{7x+7y}{xy-4x+3y-12}.
\frac{\left(y-4\right)\left(x+3\right)\left(x+y\right)^{2}}{3\times 7\left(y-4\right)\left(x+y\right)}
Factor the expressions that are not already factored.
\frac{\left(x+3\right)\left(x+y\right)}{3\times 7}
Cancel out \left(y-4\right)\left(x+y\right) in both numerator and denominator.
\frac{x^{2}+xy+3x+3y}{21}
Expand the expression.