Evaluate
\frac{\left(x+3\right)\left(x+y\right)}{21}
Expand
\frac{xy}{21}+\frac{x^{2}}{21}+\frac{x}{7}+\frac{y}{7}
Share
Copied to clipboard
\frac{\left(x^{2}+2xy+y^{2}\right)\left(xy-4x+3y-12\right)}{\left(3y-12\right)\left(7x+7y\right)}
Divide \frac{x^{2}+2xy+y^{2}}{3y-12} by \frac{7x+7y}{xy-4x+3y-12} by multiplying \frac{x^{2}+2xy+y^{2}}{3y-12} by the reciprocal of \frac{7x+7y}{xy-4x+3y-12}.
\frac{\left(y-4\right)\left(x+3\right)\left(x+y\right)^{2}}{3\times 7\left(y-4\right)\left(x+y\right)}
Factor the expressions that are not already factored.
\frac{\left(x+3\right)\left(x+y\right)}{3\times 7}
Cancel out \left(y-4\right)\left(x+y\right) in both numerator and denominator.
\frac{x^{2}+xy+3x+3y}{21}
Expand the expression.
\frac{\left(x^{2}+2xy+y^{2}\right)\left(xy-4x+3y-12\right)}{\left(3y-12\right)\left(7x+7y\right)}
Divide \frac{x^{2}+2xy+y^{2}}{3y-12} by \frac{7x+7y}{xy-4x+3y-12} by multiplying \frac{x^{2}+2xy+y^{2}}{3y-12} by the reciprocal of \frac{7x+7y}{xy-4x+3y-12}.
\frac{\left(y-4\right)\left(x+3\right)\left(x+y\right)^{2}}{3\times 7\left(y-4\right)\left(x+y\right)}
Factor the expressions that are not already factored.
\frac{\left(x+3\right)\left(x+y\right)}{3\times 7}
Cancel out \left(y-4\right)\left(x+y\right) in both numerator and denominator.
\frac{x^{2}+xy+3x+3y}{21}
Expand the expression.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}