Evaluate
\frac{3x-1}{4\left(x+1\right)}
Expand
\frac{3x-1}{4\left(x+1\right)}
Graph
Share
Copied to clipboard
\frac{x^{2}+2x-1}{\left(x+1\right)\left(3x+5\right)}+\frac{5x-1}{4\left(3x+5\right)}
Factor 3x^{2}+8x+5. Factor 12x+20.
\frac{4\left(x^{2}+2x-1\right)}{4\left(x+1\right)\left(3x+5\right)}+\frac{\left(5x-1\right)\left(x+1\right)}{4\left(x+1\right)\left(3x+5\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(x+1\right)\left(3x+5\right) and 4\left(3x+5\right) is 4\left(x+1\right)\left(3x+5\right). Multiply \frac{x^{2}+2x-1}{\left(x+1\right)\left(3x+5\right)} times \frac{4}{4}. Multiply \frac{5x-1}{4\left(3x+5\right)} times \frac{x+1}{x+1}.
\frac{4\left(x^{2}+2x-1\right)+\left(5x-1\right)\left(x+1\right)}{4\left(x+1\right)\left(3x+5\right)}
Since \frac{4\left(x^{2}+2x-1\right)}{4\left(x+1\right)\left(3x+5\right)} and \frac{\left(5x-1\right)\left(x+1\right)}{4\left(x+1\right)\left(3x+5\right)} have the same denominator, add them by adding their numerators.
\frac{4x^{2}+8x-4+5x^{2}+5x-x-1}{4\left(x+1\right)\left(3x+5\right)}
Do the multiplications in 4\left(x^{2}+2x-1\right)+\left(5x-1\right)\left(x+1\right).
\frac{9x^{2}+12x-5}{4\left(x+1\right)\left(3x+5\right)}
Combine like terms in 4x^{2}+8x-4+5x^{2}+5x-x-1.
\frac{\left(3x-1\right)\left(3x+5\right)}{4\left(x+1\right)\left(3x+5\right)}
Factor the expressions that are not already factored in \frac{9x^{2}+12x-5}{4\left(x+1\right)\left(3x+5\right)}.
\frac{3x-1}{4\left(x+1\right)}
Cancel out 3x+5 in both numerator and denominator.
\frac{3x-1}{4x+4}
Expand 4\left(x+1\right).
\frac{x^{2}+2x-1}{\left(x+1\right)\left(3x+5\right)}+\frac{5x-1}{4\left(3x+5\right)}
Factor 3x^{2}+8x+5. Factor 12x+20.
\frac{4\left(x^{2}+2x-1\right)}{4\left(x+1\right)\left(3x+5\right)}+\frac{\left(5x-1\right)\left(x+1\right)}{4\left(x+1\right)\left(3x+5\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(x+1\right)\left(3x+5\right) and 4\left(3x+5\right) is 4\left(x+1\right)\left(3x+5\right). Multiply \frac{x^{2}+2x-1}{\left(x+1\right)\left(3x+5\right)} times \frac{4}{4}. Multiply \frac{5x-1}{4\left(3x+5\right)} times \frac{x+1}{x+1}.
\frac{4\left(x^{2}+2x-1\right)+\left(5x-1\right)\left(x+1\right)}{4\left(x+1\right)\left(3x+5\right)}
Since \frac{4\left(x^{2}+2x-1\right)}{4\left(x+1\right)\left(3x+5\right)} and \frac{\left(5x-1\right)\left(x+1\right)}{4\left(x+1\right)\left(3x+5\right)} have the same denominator, add them by adding their numerators.
\frac{4x^{2}+8x-4+5x^{2}+5x-x-1}{4\left(x+1\right)\left(3x+5\right)}
Do the multiplications in 4\left(x^{2}+2x-1\right)+\left(5x-1\right)\left(x+1\right).
\frac{9x^{2}+12x-5}{4\left(x+1\right)\left(3x+5\right)}
Combine like terms in 4x^{2}+8x-4+5x^{2}+5x-x-1.
\frac{\left(3x-1\right)\left(3x+5\right)}{4\left(x+1\right)\left(3x+5\right)}
Factor the expressions that are not already factored in \frac{9x^{2}+12x-5}{4\left(x+1\right)\left(3x+5\right)}.
\frac{3x-1}{4\left(x+1\right)}
Cancel out 3x+5 in both numerator and denominator.
\frac{3x-1}{4x+4}
Expand 4\left(x+1\right).
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}