Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{x^{2}+2x+5}{x+4}-x\geq -3
Subtract x from both sides.
\frac{x^{2}+2x+5}{x+4}-\frac{x\left(x+4\right)}{x+4}\geq -3
To add or subtract expressions, expand them to make their denominators the same. Multiply x times \frac{x+4}{x+4}.
\frac{x^{2}+2x+5-x\left(x+4\right)}{x+4}\geq -3
Since \frac{x^{2}+2x+5}{x+4} and \frac{x\left(x+4\right)}{x+4} have the same denominator, subtract them by subtracting their numerators.
\frac{x^{2}+2x+5-x^{2}-4x}{x+4}\geq -3
Do the multiplications in x^{2}+2x+5-x\left(x+4\right).
\frac{-2x+5}{x+4}\geq -3
Combine like terms in x^{2}+2x+5-x^{2}-4x.
x+4>0 x+4<0
Denominator x+4 cannot be zero since division by zero is not defined. There are two cases.
x>-4
Consider the case when x+4 is positive. Move 4 to the right hand side.
-2x+5\geq -3\left(x+4\right)
The initial inequality does not change the direction when multiplied by x+4 for x+4>0.
-2x+5\geq -3x-12
Multiply out the right hand side.
-2x+3x\geq -5-12
Move the terms containing x to the left hand side and all other terms to the right hand side.
x\geq -17
Combine like terms.
x>-4
Consider condition x>-4 specified above.
x<-4
Now consider the case when x+4 is negative. Move 4 to the right hand side.
-2x+5\leq -3\left(x+4\right)
The initial inequality changes the direction when multiplied by x+4 for x+4<0.
-2x+5\leq -3x-12
Multiply out the right hand side.
-2x+3x\leq -5-12
Move the terms containing x to the left hand side and all other terms to the right hand side.
x\leq -17
Combine like terms.
x\in (-\infty,-17]\cup (-4,\infty)
The final solution is the union of the obtained solutions.