Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{x^{2}+2}{3\left(x-4\right)\left(x-2\right)}-\frac{x^{2}-x-6}{\left(x-2\right)^{2}}
Factor 3x^{2}-18x+24. Factor x^{2}-4x+4.
\frac{\left(x^{2}+2\right)\left(x-2\right)}{3\left(x-4\right)\left(x-2\right)^{2}}-\frac{\left(x^{2}-x-6\right)\times 3\left(x-4\right)}{3\left(x-4\right)\left(x-2\right)^{2}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 3\left(x-4\right)\left(x-2\right) and \left(x-2\right)^{2} is 3\left(x-4\right)\left(x-2\right)^{2}. Multiply \frac{x^{2}+2}{3\left(x-4\right)\left(x-2\right)} times \frac{x-2}{x-2}. Multiply \frac{x^{2}-x-6}{\left(x-2\right)^{2}} times \frac{3\left(x-4\right)}{3\left(x-4\right)}.
\frac{\left(x^{2}+2\right)\left(x-2\right)-\left(x^{2}-x-6\right)\times 3\left(x-4\right)}{3\left(x-4\right)\left(x-2\right)^{2}}
Since \frac{\left(x^{2}+2\right)\left(x-2\right)}{3\left(x-4\right)\left(x-2\right)^{2}} and \frac{\left(x^{2}-x-6\right)\times 3\left(x-4\right)}{3\left(x-4\right)\left(x-2\right)^{2}} have the same denominator, subtract them by subtracting their numerators.
\frac{x^{3}-2x^{2}+2x-4-3x^{3}+12x^{2}+3x^{2}-12x+18x-72}{3\left(x-4\right)\left(x-2\right)^{2}}
Do the multiplications in \left(x^{2}+2\right)\left(x-2\right)-\left(x^{2}-x-6\right)\times 3\left(x-4\right).
\frac{-2x^{3}+13x^{2}+8x-76}{3\left(x-4\right)\left(x-2\right)^{2}}
Combine like terms in x^{3}-2x^{2}+2x-4-3x^{3}+12x^{2}+3x^{2}-12x+18x-72.
\frac{-2x^{3}+13x^{2}+8x-76}{3x^{3}-24x^{2}+60x-48}
Expand 3\left(x-4\right)\left(x-2\right)^{2}.
\frac{x^{2}+2}{3\left(x-4\right)\left(x-2\right)}-\frac{x^{2}-x-6}{\left(x-2\right)^{2}}
Factor 3x^{2}-18x+24. Factor x^{2}-4x+4.
\frac{\left(x^{2}+2\right)\left(x-2\right)}{3\left(x-4\right)\left(x-2\right)^{2}}-\frac{\left(x^{2}-x-6\right)\times 3\left(x-4\right)}{3\left(x-4\right)\left(x-2\right)^{2}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 3\left(x-4\right)\left(x-2\right) and \left(x-2\right)^{2} is 3\left(x-4\right)\left(x-2\right)^{2}. Multiply \frac{x^{2}+2}{3\left(x-4\right)\left(x-2\right)} times \frac{x-2}{x-2}. Multiply \frac{x^{2}-x-6}{\left(x-2\right)^{2}} times \frac{3\left(x-4\right)}{3\left(x-4\right)}.
\frac{\left(x^{2}+2\right)\left(x-2\right)-\left(x^{2}-x-6\right)\times 3\left(x-4\right)}{3\left(x-4\right)\left(x-2\right)^{2}}
Since \frac{\left(x^{2}+2\right)\left(x-2\right)}{3\left(x-4\right)\left(x-2\right)^{2}} and \frac{\left(x^{2}-x-6\right)\times 3\left(x-4\right)}{3\left(x-4\right)\left(x-2\right)^{2}} have the same denominator, subtract them by subtracting their numerators.
\frac{x^{3}-2x^{2}+2x-4-3x^{3}+12x^{2}+3x^{2}-12x+18x-72}{3\left(x-4\right)\left(x-2\right)^{2}}
Do the multiplications in \left(x^{2}+2\right)\left(x-2\right)-\left(x^{2}-x-6\right)\times 3\left(x-4\right).
\frac{-2x^{3}+13x^{2}+8x-76}{3\left(x-4\right)\left(x-2\right)^{2}}
Combine like terms in x^{3}-2x^{2}+2x-4-3x^{3}+12x^{2}+3x^{2}-12x+18x-72.
\frac{-2x^{3}+13x^{2}+8x-76}{3x^{3}-24x^{2}+60x-48}
Expand 3\left(x-4\right)\left(x-2\right)^{2}.