Evaluate
\frac{-2x^{3}+13x^{2}+8x-76}{3\left(x-4\right)\left(x-2\right)^{2}}
Expand
-\frac{2x^{3}-13x^{2}-8x+76}{3\left(x-4\right)\left(x-2\right)^{2}}
Graph
Share
Copied to clipboard
\frac{x^{2}+2}{3\left(x-4\right)\left(x-2\right)}-\frac{x^{2}-x-6}{\left(x-2\right)^{2}}
Factor 3x^{2}-18x+24. Factor x^{2}-4x+4.
\frac{\left(x^{2}+2\right)\left(x-2\right)}{3\left(x-4\right)\left(x-2\right)^{2}}-\frac{\left(x^{2}-x-6\right)\times 3\left(x-4\right)}{3\left(x-4\right)\left(x-2\right)^{2}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 3\left(x-4\right)\left(x-2\right) and \left(x-2\right)^{2} is 3\left(x-4\right)\left(x-2\right)^{2}. Multiply \frac{x^{2}+2}{3\left(x-4\right)\left(x-2\right)} times \frac{x-2}{x-2}. Multiply \frac{x^{2}-x-6}{\left(x-2\right)^{2}} times \frac{3\left(x-4\right)}{3\left(x-4\right)}.
\frac{\left(x^{2}+2\right)\left(x-2\right)-\left(x^{2}-x-6\right)\times 3\left(x-4\right)}{3\left(x-4\right)\left(x-2\right)^{2}}
Since \frac{\left(x^{2}+2\right)\left(x-2\right)}{3\left(x-4\right)\left(x-2\right)^{2}} and \frac{\left(x^{2}-x-6\right)\times 3\left(x-4\right)}{3\left(x-4\right)\left(x-2\right)^{2}} have the same denominator, subtract them by subtracting their numerators.
\frac{x^{3}-2x^{2}+2x-4-3x^{3}+12x^{2}+3x^{2}-12x+18x-72}{3\left(x-4\right)\left(x-2\right)^{2}}
Do the multiplications in \left(x^{2}+2\right)\left(x-2\right)-\left(x^{2}-x-6\right)\times 3\left(x-4\right).
\frac{-2x^{3}+13x^{2}+8x-76}{3\left(x-4\right)\left(x-2\right)^{2}}
Combine like terms in x^{3}-2x^{2}+2x-4-3x^{3}+12x^{2}+3x^{2}-12x+18x-72.
\frac{-2x^{3}+13x^{2}+8x-76}{3x^{3}-24x^{2}+60x-48}
Expand 3\left(x-4\right)\left(x-2\right)^{2}.
\frac{x^{2}+2}{3\left(x-4\right)\left(x-2\right)}-\frac{x^{2}-x-6}{\left(x-2\right)^{2}}
Factor 3x^{2}-18x+24. Factor x^{2}-4x+4.
\frac{\left(x^{2}+2\right)\left(x-2\right)}{3\left(x-4\right)\left(x-2\right)^{2}}-\frac{\left(x^{2}-x-6\right)\times 3\left(x-4\right)}{3\left(x-4\right)\left(x-2\right)^{2}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 3\left(x-4\right)\left(x-2\right) and \left(x-2\right)^{2} is 3\left(x-4\right)\left(x-2\right)^{2}. Multiply \frac{x^{2}+2}{3\left(x-4\right)\left(x-2\right)} times \frac{x-2}{x-2}. Multiply \frac{x^{2}-x-6}{\left(x-2\right)^{2}} times \frac{3\left(x-4\right)}{3\left(x-4\right)}.
\frac{\left(x^{2}+2\right)\left(x-2\right)-\left(x^{2}-x-6\right)\times 3\left(x-4\right)}{3\left(x-4\right)\left(x-2\right)^{2}}
Since \frac{\left(x^{2}+2\right)\left(x-2\right)}{3\left(x-4\right)\left(x-2\right)^{2}} and \frac{\left(x^{2}-x-6\right)\times 3\left(x-4\right)}{3\left(x-4\right)\left(x-2\right)^{2}} have the same denominator, subtract them by subtracting their numerators.
\frac{x^{3}-2x^{2}+2x-4-3x^{3}+12x^{2}+3x^{2}-12x+18x-72}{3\left(x-4\right)\left(x-2\right)^{2}}
Do the multiplications in \left(x^{2}+2\right)\left(x-2\right)-\left(x^{2}-x-6\right)\times 3\left(x-4\right).
\frac{-2x^{3}+13x^{2}+8x-76}{3\left(x-4\right)\left(x-2\right)^{2}}
Combine like terms in x^{3}-2x^{2}+2x-4-3x^{3}+12x^{2}+3x^{2}-12x+18x-72.
\frac{-2x^{3}+13x^{2}+8x-76}{3x^{3}-24x^{2}+60x-48}
Expand 3\left(x-4\right)\left(x-2\right)^{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}