Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{x^{2}+2}{\left(x-4\right)\left(x-1\right)}-\frac{\left(x-2\right)\left(x-4\right)}{\left(x-4\right)\left(x-1\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(x-4\right)\left(x-1\right) and x-1 is \left(x-4\right)\left(x-1\right). Multiply \frac{x-2}{x-1} times \frac{x-4}{x-4}.
\frac{x^{2}+2-\left(x-2\right)\left(x-4\right)}{\left(x-4\right)\left(x-1\right)}
Since \frac{x^{2}+2}{\left(x-4\right)\left(x-1\right)} and \frac{\left(x-2\right)\left(x-4\right)}{\left(x-4\right)\left(x-1\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{x^{2}+2-x^{2}+4x+2x-8}{\left(x-4\right)\left(x-1\right)}
Do the multiplications in x^{2}+2-\left(x-2\right)\left(x-4\right).
\frac{-6+6x}{\left(x-4\right)\left(x-1\right)}
Combine like terms in x^{2}+2-x^{2}+4x+2x-8.
\frac{6\left(x-1\right)}{\left(x-4\right)\left(x-1\right)}
Factor the expressions that are not already factored in \frac{-6+6x}{\left(x-4\right)\left(x-1\right)}.
\frac{6}{x-4}
Cancel out x-1 in both numerator and denominator.
\frac{x^{2}+2}{\left(x-4\right)\left(x-1\right)}-\frac{\left(x-2\right)\left(x-4\right)}{\left(x-4\right)\left(x-1\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(x-4\right)\left(x-1\right) and x-1 is \left(x-4\right)\left(x-1\right). Multiply \frac{x-2}{x-1} times \frac{x-4}{x-4}.
\frac{x^{2}+2-\left(x-2\right)\left(x-4\right)}{\left(x-4\right)\left(x-1\right)}
Since \frac{x^{2}+2}{\left(x-4\right)\left(x-1\right)} and \frac{\left(x-2\right)\left(x-4\right)}{\left(x-4\right)\left(x-1\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{x^{2}+2-x^{2}+4x+2x-8}{\left(x-4\right)\left(x-1\right)}
Do the multiplications in x^{2}+2-\left(x-2\right)\left(x-4\right).
\frac{-6+6x}{\left(x-4\right)\left(x-1\right)}
Combine like terms in x^{2}+2-x^{2}+4x+2x-8.
\frac{6\left(x-1\right)}{\left(x-4\right)\left(x-1\right)}
Factor the expressions that are not already factored in \frac{-6+6x}{\left(x-4\right)\left(x-1\right)}.
\frac{6}{x-4}
Cancel out x-1 in both numerator and denominator.