Solve for x
x=3
Graph
Share
Copied to clipboard
7\left(x^{2}+12x+20\right)=13\left(x+2\right)\left(x+4\right)
Variable x cannot be equal to any of the values -4,-2 since division by zero is not defined. Multiply both sides of the equation by 7\left(x+2\right)\left(x+4\right), the least common multiple of x^{2}+6x+8,7.
7x^{2}+84x+140=13\left(x+2\right)\left(x+4\right)
Use the distributive property to multiply 7 by x^{2}+12x+20.
7x^{2}+84x+140=\left(13x+26\right)\left(x+4\right)
Use the distributive property to multiply 13 by x+2.
7x^{2}+84x+140=13x^{2}+78x+104
Use the distributive property to multiply 13x+26 by x+4 and combine like terms.
7x^{2}+84x+140-13x^{2}=78x+104
Subtract 13x^{2} from both sides.
-6x^{2}+84x+140=78x+104
Combine 7x^{2} and -13x^{2} to get -6x^{2}.
-6x^{2}+84x+140-78x=104
Subtract 78x from both sides.
-6x^{2}+6x+140=104
Combine 84x and -78x to get 6x.
-6x^{2}+6x+140-104=0
Subtract 104 from both sides.
-6x^{2}+6x+36=0
Subtract 104 from 140 to get 36.
-x^{2}+x+6=0
Divide both sides by 6.
a+b=1 ab=-6=-6
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as -x^{2}+ax+bx+6. To find a and b, set up a system to be solved.
-1,6 -2,3
Since ab is negative, a and b have the opposite signs. Since a+b is positive, the positive number has greater absolute value than the negative. List all such integer pairs that give product -6.
-1+6=5 -2+3=1
Calculate the sum for each pair.
a=3 b=-2
The solution is the pair that gives sum 1.
\left(-x^{2}+3x\right)+\left(-2x+6\right)
Rewrite -x^{2}+x+6 as \left(-x^{2}+3x\right)+\left(-2x+6\right).
-x\left(x-3\right)-2\left(x-3\right)
Factor out -x in the first and -2 in the second group.
\left(x-3\right)\left(-x-2\right)
Factor out common term x-3 by using distributive property.
x=3 x=-2
To find equation solutions, solve x-3=0 and -x-2=0.
x=3
Variable x cannot be equal to -2.
7\left(x^{2}+12x+20\right)=13\left(x+2\right)\left(x+4\right)
Variable x cannot be equal to any of the values -4,-2 since division by zero is not defined. Multiply both sides of the equation by 7\left(x+2\right)\left(x+4\right), the least common multiple of x^{2}+6x+8,7.
7x^{2}+84x+140=13\left(x+2\right)\left(x+4\right)
Use the distributive property to multiply 7 by x^{2}+12x+20.
7x^{2}+84x+140=\left(13x+26\right)\left(x+4\right)
Use the distributive property to multiply 13 by x+2.
7x^{2}+84x+140=13x^{2}+78x+104
Use the distributive property to multiply 13x+26 by x+4 and combine like terms.
7x^{2}+84x+140-13x^{2}=78x+104
Subtract 13x^{2} from both sides.
-6x^{2}+84x+140=78x+104
Combine 7x^{2} and -13x^{2} to get -6x^{2}.
-6x^{2}+84x+140-78x=104
Subtract 78x from both sides.
-6x^{2}+6x+140=104
Combine 84x and -78x to get 6x.
-6x^{2}+6x+140-104=0
Subtract 104 from both sides.
-6x^{2}+6x+36=0
Subtract 104 from 140 to get 36.
x=\frac{-6±\sqrt{6^{2}-4\left(-6\right)\times 36}}{2\left(-6\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -6 for a, 6 for b, and 36 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-6±\sqrt{36-4\left(-6\right)\times 36}}{2\left(-6\right)}
Square 6.
x=\frac{-6±\sqrt{36+24\times 36}}{2\left(-6\right)}
Multiply -4 times -6.
x=\frac{-6±\sqrt{36+864}}{2\left(-6\right)}
Multiply 24 times 36.
x=\frac{-6±\sqrt{900}}{2\left(-6\right)}
Add 36 to 864.
x=\frac{-6±30}{2\left(-6\right)}
Take the square root of 900.
x=\frac{-6±30}{-12}
Multiply 2 times -6.
x=\frac{24}{-12}
Now solve the equation x=\frac{-6±30}{-12} when ± is plus. Add -6 to 30.
x=-2
Divide 24 by -12.
x=-\frac{36}{-12}
Now solve the equation x=\frac{-6±30}{-12} when ± is minus. Subtract 30 from -6.
x=3
Divide -36 by -12.
x=-2 x=3
The equation is now solved.
x=3
Variable x cannot be equal to -2.
7\left(x^{2}+12x+20\right)=13\left(x+2\right)\left(x+4\right)
Variable x cannot be equal to any of the values -4,-2 since division by zero is not defined. Multiply both sides of the equation by 7\left(x+2\right)\left(x+4\right), the least common multiple of x^{2}+6x+8,7.
7x^{2}+84x+140=13\left(x+2\right)\left(x+4\right)
Use the distributive property to multiply 7 by x^{2}+12x+20.
7x^{2}+84x+140=\left(13x+26\right)\left(x+4\right)
Use the distributive property to multiply 13 by x+2.
7x^{2}+84x+140=13x^{2}+78x+104
Use the distributive property to multiply 13x+26 by x+4 and combine like terms.
7x^{2}+84x+140-13x^{2}=78x+104
Subtract 13x^{2} from both sides.
-6x^{2}+84x+140=78x+104
Combine 7x^{2} and -13x^{2} to get -6x^{2}.
-6x^{2}+84x+140-78x=104
Subtract 78x from both sides.
-6x^{2}+6x+140=104
Combine 84x and -78x to get 6x.
-6x^{2}+6x=104-140
Subtract 140 from both sides.
-6x^{2}+6x=-36
Subtract 140 from 104 to get -36.
\frac{-6x^{2}+6x}{-6}=-\frac{36}{-6}
Divide both sides by -6.
x^{2}+\frac{6}{-6}x=-\frac{36}{-6}
Dividing by -6 undoes the multiplication by -6.
x^{2}-x=-\frac{36}{-6}
Divide 6 by -6.
x^{2}-x=6
Divide -36 by -6.
x^{2}-x+\left(-\frac{1}{2}\right)^{2}=6+\left(-\frac{1}{2}\right)^{2}
Divide -1, the coefficient of the x term, by 2 to get -\frac{1}{2}. Then add the square of -\frac{1}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-x+\frac{1}{4}=6+\frac{1}{4}
Square -\frac{1}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}-x+\frac{1}{4}=\frac{25}{4}
Add 6 to \frac{1}{4}.
\left(x-\frac{1}{2}\right)^{2}=\frac{25}{4}
Factor x^{2}-x+\frac{1}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{1}{2}\right)^{2}}=\sqrt{\frac{25}{4}}
Take the square root of both sides of the equation.
x-\frac{1}{2}=\frac{5}{2} x-\frac{1}{2}=-\frac{5}{2}
Simplify.
x=3 x=-2
Add \frac{1}{2} to both sides of the equation.
x=3
Variable x cannot be equal to -2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}