Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{x^{2}+1}{x^{2}-1}+\frac{\left(x+2\right)\left(x-1\right)}{\left(x-2\right)\left(x+1\right)}
Multiply \frac{x+2}{x-2} times \frac{x-1}{x+1} by multiplying numerator times numerator and denominator times denominator.
\frac{x^{2}+1}{\left(x-1\right)\left(x+1\right)}+\frac{\left(x+2\right)\left(x-1\right)}{\left(x-2\right)\left(x+1\right)}
Factor x^{2}-1.
\frac{\left(x^{2}+1\right)\left(x-2\right)}{\left(x-2\right)\left(x-1\right)\left(x+1\right)}+\frac{\left(x+2\right)\left(x-1\right)\left(x-1\right)}{\left(x-2\right)\left(x-1\right)\left(x+1\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(x-1\right)\left(x+1\right) and \left(x-2\right)\left(x+1\right) is \left(x-2\right)\left(x-1\right)\left(x+1\right). Multiply \frac{x^{2}+1}{\left(x-1\right)\left(x+1\right)} times \frac{x-2}{x-2}. Multiply \frac{\left(x+2\right)\left(x-1\right)}{\left(x-2\right)\left(x+1\right)} times \frac{x-1}{x-1}.
\frac{\left(x^{2}+1\right)\left(x-2\right)+\left(x+2\right)\left(x-1\right)\left(x-1\right)}{\left(x-2\right)\left(x-1\right)\left(x+1\right)}
Since \frac{\left(x^{2}+1\right)\left(x-2\right)}{\left(x-2\right)\left(x-1\right)\left(x+1\right)} and \frac{\left(x+2\right)\left(x-1\right)\left(x-1\right)}{\left(x-2\right)\left(x-1\right)\left(x+1\right)} have the same denominator, add them by adding their numerators.
\frac{x^{3}-2x^{2}+x-2+x^{3}-2x^{2}+x+2x^{2}-4x+2}{\left(x-2\right)\left(x-1\right)\left(x+1\right)}
Do the multiplications in \left(x^{2}+1\right)\left(x-2\right)+\left(x+2\right)\left(x-1\right)\left(x-1\right).
\frac{2x^{3}-2x^{2}-2x}{\left(x-2\right)\left(x-1\right)\left(x+1\right)}
Combine like terms in x^{3}-2x^{2}+x-2+x^{3}-2x^{2}+x+2x^{2}-4x+2.
\frac{2x^{3}-2x^{2}-2x}{x^{3}-2x^{2}-x+2}
Expand \left(x-2\right)\left(x-1\right)\left(x+1\right).
\frac{x^{2}+1}{x^{2}-1}+\frac{\left(x+2\right)\left(x-1\right)}{\left(x-2\right)\left(x+1\right)}
Multiply \frac{x+2}{x-2} times \frac{x-1}{x+1} by multiplying numerator times numerator and denominator times denominator.
\frac{x^{2}+1}{\left(x-1\right)\left(x+1\right)}+\frac{\left(x+2\right)\left(x-1\right)}{\left(x-2\right)\left(x+1\right)}
Factor x^{2}-1.
\frac{\left(x^{2}+1\right)\left(x-2\right)}{\left(x-2\right)\left(x-1\right)\left(x+1\right)}+\frac{\left(x+2\right)\left(x-1\right)\left(x-1\right)}{\left(x-2\right)\left(x-1\right)\left(x+1\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(x-1\right)\left(x+1\right) and \left(x-2\right)\left(x+1\right) is \left(x-2\right)\left(x-1\right)\left(x+1\right). Multiply \frac{x^{2}+1}{\left(x-1\right)\left(x+1\right)} times \frac{x-2}{x-2}. Multiply \frac{\left(x+2\right)\left(x-1\right)}{\left(x-2\right)\left(x+1\right)} times \frac{x-1}{x-1}.
\frac{\left(x^{2}+1\right)\left(x-2\right)+\left(x+2\right)\left(x-1\right)\left(x-1\right)}{\left(x-2\right)\left(x-1\right)\left(x+1\right)}
Since \frac{\left(x^{2}+1\right)\left(x-2\right)}{\left(x-2\right)\left(x-1\right)\left(x+1\right)} and \frac{\left(x+2\right)\left(x-1\right)\left(x-1\right)}{\left(x-2\right)\left(x-1\right)\left(x+1\right)} have the same denominator, add them by adding their numerators.
\frac{x^{3}-2x^{2}+x-2+x^{3}-2x^{2}+x+2x^{2}-4x+2}{\left(x-2\right)\left(x-1\right)\left(x+1\right)}
Do the multiplications in \left(x^{2}+1\right)\left(x-2\right)+\left(x+2\right)\left(x-1\right)\left(x-1\right).
\frac{2x^{3}-2x^{2}-2x}{\left(x-2\right)\left(x-1\right)\left(x+1\right)}
Combine like terms in x^{3}-2x^{2}+x-2+x^{3}-2x^{2}+x+2x^{2}-4x+2.
\frac{2x^{3}-2x^{2}-2x}{x^{3}-2x^{2}-x+2}
Expand \left(x-2\right)\left(x-1\right)\left(x+1\right).