Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{9x^{10}-x^{12}y^{8}}{36}
Factor out \frac{1}{36}.
x^{10}\left(9-x^{2}y^{8}\right)
Consider 9x^{10}-x^{12}y^{8}. Factor out x^{10}.
\left(3+xy^{4}\right)\left(3-xy^{4}\right)
Consider 9-x^{2}y^{8}. Rewrite 9-x^{2}y^{8} as 3^{2}-\left(-xy^{4}\right)^{2}. The difference of squares can be factored using the rule: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
\left(xy^{4}+3\right)\left(-xy^{4}+3\right)
Reorder the terms.
\frac{x^{10}\left(xy^{4}+3\right)\left(-xy^{4}+3\right)}{36}
Rewrite the complete factored expression.