Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(1+\frac{1}{y}x\right)\times \frac{1}{x}}{\frac{1}{x}\times \frac{1}{y}\left(x-y\right)\left(-x-y\right)}
Factor the expressions that are not already factored.
\frac{1+\frac{1}{y}x}{\frac{1}{y}\left(x-y\right)\left(-x-y\right)}
Cancel out \frac{1}{x} in both numerator and denominator.
\frac{1+\frac{1}{y}x}{-\frac{1}{y}x^{2}+y}
Expand the expression.
\frac{1+\frac{x}{y}}{-\frac{1}{y}x^{2}+y}
Express \frac{1}{y}x as a single fraction.
\frac{\frac{y}{y}+\frac{x}{y}}{-\frac{1}{y}x^{2}+y}
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{y}{y}.
\frac{\frac{y+x}{y}}{-\frac{1}{y}x^{2}+y}
Since \frac{y}{y} and \frac{x}{y} have the same denominator, add them by adding their numerators.
\frac{\frac{y+x}{y}}{-\frac{x^{2}}{y}+y}
Express \frac{1}{y}x^{2} as a single fraction.
\frac{\frac{y+x}{y}}{-\frac{x^{2}}{y}+\frac{yy}{y}}
To add or subtract expressions, expand them to make their denominators the same. Multiply y times \frac{y}{y}.
\frac{\frac{y+x}{y}}{\frac{-x^{2}+yy}{y}}
Since -\frac{x^{2}}{y} and \frac{yy}{y} have the same denominator, add them by adding their numerators.
\frac{\frac{y+x}{y}}{\frac{-x^{2}+y^{2}}{y}}
Do the multiplications in -x^{2}+yy.
\frac{\left(y+x\right)y}{y\left(-x^{2}+y^{2}\right)}
Divide \frac{y+x}{y} by \frac{-x^{2}+y^{2}}{y} by multiplying \frac{y+x}{y} by the reciprocal of \frac{-x^{2}+y^{2}}{y}.
\frac{x+y}{-x^{2}+y^{2}}
Cancel out y in both numerator and denominator.
\frac{x+y}{\left(x-y\right)\left(-x-y\right)}
Factor the expressions that are not already factored.
\frac{-\left(-x-y\right)}{\left(x-y\right)\left(-x-y\right)}
Extract the negative sign in y+x.
\frac{-1}{x-y}
Cancel out -x-y in both numerator and denominator.
\frac{\left(1+\frac{1}{y}x\right)\times \frac{1}{x}}{\frac{1}{x}\times \frac{1}{y}\left(x-y\right)\left(-x-y\right)}
Factor the expressions that are not already factored.
\frac{1+\frac{1}{y}x}{\frac{1}{y}\left(x-y\right)\left(-x-y\right)}
Cancel out \frac{1}{x} in both numerator and denominator.
\frac{1+\frac{1}{y}x}{-\frac{1}{y}x^{2}+y}
Expand the expression.
\frac{1+\frac{x}{y}}{-\frac{1}{y}x^{2}+y}
Express \frac{1}{y}x as a single fraction.
\frac{\frac{y}{y}+\frac{x}{y}}{-\frac{1}{y}x^{2}+y}
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{y}{y}.
\frac{\frac{y+x}{y}}{-\frac{1}{y}x^{2}+y}
Since \frac{y}{y} and \frac{x}{y} have the same denominator, add them by adding their numerators.
\frac{\frac{y+x}{y}}{-\frac{x^{2}}{y}+y}
Express \frac{1}{y}x^{2} as a single fraction.
\frac{\frac{y+x}{y}}{-\frac{x^{2}}{y}+\frac{yy}{y}}
To add or subtract expressions, expand them to make their denominators the same. Multiply y times \frac{y}{y}.
\frac{\frac{y+x}{y}}{\frac{-x^{2}+yy}{y}}
Since -\frac{x^{2}}{y} and \frac{yy}{y} have the same denominator, add them by adding their numerators.
\frac{\frac{y+x}{y}}{\frac{-x^{2}+y^{2}}{y}}
Do the multiplications in -x^{2}+yy.
\frac{\left(y+x\right)y}{y\left(-x^{2}+y^{2}\right)}
Divide \frac{y+x}{y} by \frac{-x^{2}+y^{2}}{y} by multiplying \frac{y+x}{y} by the reciprocal of \frac{-x^{2}+y^{2}}{y}.
\frac{x+y}{-x^{2}+y^{2}}
Cancel out y in both numerator and denominator.
\frac{x+y}{\left(x-y\right)\left(-x-y\right)}
Factor the expressions that are not already factored.
\frac{-\left(-x-y\right)}{\left(x-y\right)\left(-x-y\right)}
Extract the negative sign in y+x.
\frac{-1}{x-y}
Cancel out -x-y in both numerator and denominator.