Evaluate
-\frac{1}{x-y}
Expand
\frac{1}{y-x}
Quiz
Algebra
5 problems similar to:
\frac { x ^ { - 1 } + y ^ { - 1 } } { x ^ { - 1 } y - y ^ { - 1 } x }
Share
Copied to clipboard
\frac{\left(1+\frac{1}{y}x\right)\times \frac{1}{x}}{\frac{1}{x}\times \frac{1}{y}\left(x-y\right)\left(-x-y\right)}
Factor the expressions that are not already factored.
\frac{1+\frac{1}{y}x}{\frac{1}{y}\left(x-y\right)\left(-x-y\right)}
Cancel out \frac{1}{x} in both numerator and denominator.
\frac{1+\frac{1}{y}x}{-\frac{1}{y}x^{2}+y}
Expand the expression.
\frac{1+\frac{x}{y}}{-\frac{1}{y}x^{2}+y}
Express \frac{1}{y}x as a single fraction.
\frac{\frac{y}{y}+\frac{x}{y}}{-\frac{1}{y}x^{2}+y}
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{y}{y}.
\frac{\frac{y+x}{y}}{-\frac{1}{y}x^{2}+y}
Since \frac{y}{y} and \frac{x}{y} have the same denominator, add them by adding their numerators.
\frac{\frac{y+x}{y}}{-\frac{x^{2}}{y}+y}
Express \frac{1}{y}x^{2} as a single fraction.
\frac{\frac{y+x}{y}}{-\frac{x^{2}}{y}+\frac{yy}{y}}
To add or subtract expressions, expand them to make their denominators the same. Multiply y times \frac{y}{y}.
\frac{\frac{y+x}{y}}{\frac{-x^{2}+yy}{y}}
Since -\frac{x^{2}}{y} and \frac{yy}{y} have the same denominator, add them by adding their numerators.
\frac{\frac{y+x}{y}}{\frac{-x^{2}+y^{2}}{y}}
Do the multiplications in -x^{2}+yy.
\frac{\left(y+x\right)y}{y\left(-x^{2}+y^{2}\right)}
Divide \frac{y+x}{y} by \frac{-x^{2}+y^{2}}{y} by multiplying \frac{y+x}{y} by the reciprocal of \frac{-x^{2}+y^{2}}{y}.
\frac{x+y}{-x^{2}+y^{2}}
Cancel out y in both numerator and denominator.
\frac{x+y}{\left(x-y\right)\left(-x-y\right)}
Factor the expressions that are not already factored.
\frac{-\left(-x-y\right)}{\left(x-y\right)\left(-x-y\right)}
Extract the negative sign in y+x.
\frac{-1}{x-y}
Cancel out -x-y in both numerator and denominator.
\frac{\left(1+\frac{1}{y}x\right)\times \frac{1}{x}}{\frac{1}{x}\times \frac{1}{y}\left(x-y\right)\left(-x-y\right)}
Factor the expressions that are not already factored.
\frac{1+\frac{1}{y}x}{\frac{1}{y}\left(x-y\right)\left(-x-y\right)}
Cancel out \frac{1}{x} in both numerator and denominator.
\frac{1+\frac{1}{y}x}{-\frac{1}{y}x^{2}+y}
Expand the expression.
\frac{1+\frac{x}{y}}{-\frac{1}{y}x^{2}+y}
Express \frac{1}{y}x as a single fraction.
\frac{\frac{y}{y}+\frac{x}{y}}{-\frac{1}{y}x^{2}+y}
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{y}{y}.
\frac{\frac{y+x}{y}}{-\frac{1}{y}x^{2}+y}
Since \frac{y}{y} and \frac{x}{y} have the same denominator, add them by adding their numerators.
\frac{\frac{y+x}{y}}{-\frac{x^{2}}{y}+y}
Express \frac{1}{y}x^{2} as a single fraction.
\frac{\frac{y+x}{y}}{-\frac{x^{2}}{y}+\frac{yy}{y}}
To add or subtract expressions, expand them to make their denominators the same. Multiply y times \frac{y}{y}.
\frac{\frac{y+x}{y}}{\frac{-x^{2}+yy}{y}}
Since -\frac{x^{2}}{y} and \frac{yy}{y} have the same denominator, add them by adding their numerators.
\frac{\frac{y+x}{y}}{\frac{-x^{2}+y^{2}}{y}}
Do the multiplications in -x^{2}+yy.
\frac{\left(y+x\right)y}{y\left(-x^{2}+y^{2}\right)}
Divide \frac{y+x}{y} by \frac{-x^{2}+y^{2}}{y} by multiplying \frac{y+x}{y} by the reciprocal of \frac{-x^{2}+y^{2}}{y}.
\frac{x+y}{-x^{2}+y^{2}}
Cancel out y in both numerator and denominator.
\frac{x+y}{\left(x-y\right)\left(-x-y\right)}
Factor the expressions that are not already factored.
\frac{-\left(-x-y\right)}{\left(x-y\right)\left(-x-y\right)}
Extract the negative sign in y+x.
\frac{-1}{x-y}
Cancel out -x-y in both numerator and denominator.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}