Evaluate
\frac{2}{xy}
Expand
\frac{2}{xy}
Share
Copied to clipboard
\frac{\left(x^{-1}+y^{-1}\right)\left(x-y\right)}{\left(x+y\right)\left(x-y\right)}-\frac{\left(x^{-1}-y^{-1}\right)\left(x+y\right)}{\left(x+y\right)\left(x-y\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x+y and x-y is \left(x+y\right)\left(x-y\right). Multiply \frac{x^{-1}+y^{-1}}{x+y} times \frac{x-y}{x-y}. Multiply \frac{x^{-1}-y^{-1}}{x-y} times \frac{x+y}{x+y}.
\frac{\left(x^{-1}+y^{-1}\right)\left(x-y\right)-\left(x^{-1}-y^{-1}\right)\left(x+y\right)}{\left(x+y\right)\left(x-y\right)}
Since \frac{\left(x^{-1}+y^{-1}\right)\left(x-y\right)}{\left(x+y\right)\left(x-y\right)} and \frac{\left(x^{-1}-y^{-1}\right)\left(x+y\right)}{\left(x+y\right)\left(x-y\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{1-\frac{1}{x}y+\frac{1}{y}x-1-1-\frac{1}{x}y+\frac{1}{y}x+1}{\left(x+y\right)\left(x-y\right)}
Do the multiplications in \left(x^{-1}+y^{-1}\right)\left(x-y\right)-\left(x^{-1}-y^{-1}\right)\left(x+y\right).
\frac{2\times \frac{1}{y}x-2\times \frac{1}{x}y}{\left(x+y\right)\left(x-y\right)}
Combine like terms in 1-\frac{1}{x}y+\frac{1}{y}x-1-1-\frac{1}{x}y+\frac{1}{y}x+1.
\frac{2\times \frac{1}{y}x-2\times \frac{1}{x}y}{x^{2}-y^{2}}
Expand \left(x+y\right)\left(x-y\right).
\frac{\frac{2}{y}x-2\times \frac{1}{x}y}{x^{2}-y^{2}}
Express 2\times \frac{1}{y} as a single fraction.
\frac{\frac{2x}{y}-2\times \frac{1}{x}y}{x^{2}-y^{2}}
Express \frac{2}{y}x as a single fraction.
\frac{\frac{2x}{y}+\frac{-2}{x}y}{x^{2}-y^{2}}
Express -2\times \frac{1}{x} as a single fraction.
\frac{\frac{2x}{y}+\frac{-2y}{x}}{x^{2}-y^{2}}
Express \frac{-2}{x}y as a single fraction.
\frac{\frac{2xx}{xy}+\frac{-2yy}{xy}}{x^{2}-y^{2}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of y and x is xy. Multiply \frac{2x}{y} times \frac{x}{x}. Multiply \frac{-2y}{x} times \frac{y}{y}.
\frac{\frac{2xx-2yy}{xy}}{x^{2}-y^{2}}
Since \frac{2xx}{xy} and \frac{-2yy}{xy} have the same denominator, add them by adding their numerators.
\frac{\frac{2x^{2}-2y^{2}}{xy}}{x^{2}-y^{2}}
Do the multiplications in 2xx-2yy.
\frac{2x^{2}-2y^{2}}{xy\left(x^{2}-y^{2}\right)}
Express \frac{\frac{2x^{2}-2y^{2}}{xy}}{x^{2}-y^{2}} as a single fraction.
\frac{2\left(x+y\right)\left(x-y\right)}{xy\left(x+y\right)\left(x-y\right)}
Factor the expressions that are not already factored.
\frac{2}{xy}
Cancel out \left(x+y\right)\left(x-y\right) in both numerator and denominator.
\frac{\left(x^{-1}+y^{-1}\right)\left(x-y\right)}{\left(x+y\right)\left(x-y\right)}-\frac{\left(x^{-1}-y^{-1}\right)\left(x+y\right)}{\left(x+y\right)\left(x-y\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x+y and x-y is \left(x+y\right)\left(x-y\right). Multiply \frac{x^{-1}+y^{-1}}{x+y} times \frac{x-y}{x-y}. Multiply \frac{x^{-1}-y^{-1}}{x-y} times \frac{x+y}{x+y}.
\frac{\left(x^{-1}+y^{-1}\right)\left(x-y\right)-\left(x^{-1}-y^{-1}\right)\left(x+y\right)}{\left(x+y\right)\left(x-y\right)}
Since \frac{\left(x^{-1}+y^{-1}\right)\left(x-y\right)}{\left(x+y\right)\left(x-y\right)} and \frac{\left(x^{-1}-y^{-1}\right)\left(x+y\right)}{\left(x+y\right)\left(x-y\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{1-\frac{1}{x}y+\frac{1}{y}x-1-1-\frac{1}{x}y+\frac{1}{y}x+1}{\left(x+y\right)\left(x-y\right)}
Do the multiplications in \left(x^{-1}+y^{-1}\right)\left(x-y\right)-\left(x^{-1}-y^{-1}\right)\left(x+y\right).
\frac{2\times \frac{1}{y}x-2\times \frac{1}{x}y}{\left(x+y\right)\left(x-y\right)}
Combine like terms in 1-\frac{1}{x}y+\frac{1}{y}x-1-1-\frac{1}{x}y+\frac{1}{y}x+1.
\frac{2\times \frac{1}{y}x-2\times \frac{1}{x}y}{x^{2}-y^{2}}
Expand \left(x+y\right)\left(x-y\right).
\frac{\frac{2}{y}x-2\times \frac{1}{x}y}{x^{2}-y^{2}}
Express 2\times \frac{1}{y} as a single fraction.
\frac{\frac{2x}{y}-2\times \frac{1}{x}y}{x^{2}-y^{2}}
Express \frac{2}{y}x as a single fraction.
\frac{\frac{2x}{y}+\frac{-2}{x}y}{x^{2}-y^{2}}
Express -2\times \frac{1}{x} as a single fraction.
\frac{\frac{2x}{y}+\frac{-2y}{x}}{x^{2}-y^{2}}
Express \frac{-2}{x}y as a single fraction.
\frac{\frac{2xx}{xy}+\frac{-2yy}{xy}}{x^{2}-y^{2}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of y and x is xy. Multiply \frac{2x}{y} times \frac{x}{x}. Multiply \frac{-2y}{x} times \frac{y}{y}.
\frac{\frac{2xx-2yy}{xy}}{x^{2}-y^{2}}
Since \frac{2xx}{xy} and \frac{-2yy}{xy} have the same denominator, add them by adding their numerators.
\frac{\frac{2x^{2}-2y^{2}}{xy}}{x^{2}-y^{2}}
Do the multiplications in 2xx-2yy.
\frac{2x^{2}-2y^{2}}{xy\left(x^{2}-y^{2}\right)}
Express \frac{\frac{2x^{2}-2y^{2}}{xy}}{x^{2}-y^{2}} as a single fraction.
\frac{2\left(x+y\right)\left(x-y\right)}{xy\left(x+y\right)\left(x-y\right)}
Factor the expressions that are not already factored.
\frac{2}{xy}
Cancel out \left(x+y\right)\left(x-y\right) in both numerator and denominator.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}