Evaluate
\frac{2\left(x+2y\right)}{y\left(x+y\right)}
Expand
\frac{2\left(x+2y\right)}{y\left(x+y\right)}
Share
Copied to clipboard
\frac{x+y}{xy}+\frac{x+2y}{y\left(x+y\right)}-\frac{y}{x^{2}+xy}
Factor xy+y^{2}.
\frac{\left(x+y\right)\left(x+y\right)}{xy\left(x+y\right)}+\frac{\left(x+2y\right)x}{xy\left(x+y\right)}-\frac{y}{x^{2}+xy}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of xy and y\left(x+y\right) is xy\left(x+y\right). Multiply \frac{x+y}{xy} times \frac{x+y}{x+y}. Multiply \frac{x+2y}{y\left(x+y\right)} times \frac{x}{x}.
\frac{\left(x+y\right)\left(x+y\right)+\left(x+2y\right)x}{xy\left(x+y\right)}-\frac{y}{x^{2}+xy}
Since \frac{\left(x+y\right)\left(x+y\right)}{xy\left(x+y\right)} and \frac{\left(x+2y\right)x}{xy\left(x+y\right)} have the same denominator, add them by adding their numerators.
\frac{x^{2}+xy+xy+y^{2}+x^{2}+2yx}{xy\left(x+y\right)}-\frac{y}{x^{2}+xy}
Do the multiplications in \left(x+y\right)\left(x+y\right)+\left(x+2y\right)x.
\frac{2x^{2}+y^{2}+4xy}{xy\left(x+y\right)}-\frac{y}{x^{2}+xy}
Combine like terms in x^{2}+xy+xy+y^{2}+x^{2}+2yx.
\frac{2x^{2}+y^{2}+4xy}{xy\left(x+y\right)}-\frac{y}{x\left(x+y\right)}
Factor x^{2}+xy.
\frac{2x^{2}+y^{2}+4xy}{xy\left(x+y\right)}-\frac{yy}{xy\left(x+y\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of xy\left(x+y\right) and x\left(x+y\right) is xy\left(x+y\right). Multiply \frac{y}{x\left(x+y\right)} times \frac{y}{y}.
\frac{2x^{2}+y^{2}+4xy-yy}{xy\left(x+y\right)}
Since \frac{2x^{2}+y^{2}+4xy}{xy\left(x+y\right)} and \frac{yy}{xy\left(x+y\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{2x^{2}+y^{2}+4xy-y^{2}}{xy\left(x+y\right)}
Do the multiplications in 2x^{2}+y^{2}+4xy-yy.
\frac{2x^{2}+4xy}{xy\left(x+y\right)}
Combine like terms in 2x^{2}+y^{2}+4xy-y^{2}.
\frac{2x\left(x+2y\right)}{xy\left(x+y\right)}
Factor the expressions that are not already factored in \frac{2x^{2}+4xy}{xy\left(x+y\right)}.
\frac{2\left(x+2y\right)}{y\left(x+y\right)}
Cancel out x in both numerator and denominator.
\frac{2\left(x+2y\right)}{xy+y^{2}}
Expand y\left(x+y\right).
\frac{2x+4y}{xy+y^{2}}
Use the distributive property to multiply 2 by x+2y.
\frac{x+y}{xy}+\frac{x+2y}{y\left(x+y\right)}-\frac{y}{x^{2}+xy}
Factor xy+y^{2}.
\frac{\left(x+y\right)\left(x+y\right)}{xy\left(x+y\right)}+\frac{\left(x+2y\right)x}{xy\left(x+y\right)}-\frac{y}{x^{2}+xy}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of xy and y\left(x+y\right) is xy\left(x+y\right). Multiply \frac{x+y}{xy} times \frac{x+y}{x+y}. Multiply \frac{x+2y}{y\left(x+y\right)} times \frac{x}{x}.
\frac{\left(x+y\right)\left(x+y\right)+\left(x+2y\right)x}{xy\left(x+y\right)}-\frac{y}{x^{2}+xy}
Since \frac{\left(x+y\right)\left(x+y\right)}{xy\left(x+y\right)} and \frac{\left(x+2y\right)x}{xy\left(x+y\right)} have the same denominator, add them by adding their numerators.
\frac{x^{2}+xy+xy+y^{2}+x^{2}+2yx}{xy\left(x+y\right)}-\frac{y}{x^{2}+xy}
Do the multiplications in \left(x+y\right)\left(x+y\right)+\left(x+2y\right)x.
\frac{2x^{2}+y^{2}+4xy}{xy\left(x+y\right)}-\frac{y}{x^{2}+xy}
Combine like terms in x^{2}+xy+xy+y^{2}+x^{2}+2yx.
\frac{2x^{2}+y^{2}+4xy}{xy\left(x+y\right)}-\frac{y}{x\left(x+y\right)}
Factor x^{2}+xy.
\frac{2x^{2}+y^{2}+4xy}{xy\left(x+y\right)}-\frac{yy}{xy\left(x+y\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of xy\left(x+y\right) and x\left(x+y\right) is xy\left(x+y\right). Multiply \frac{y}{x\left(x+y\right)} times \frac{y}{y}.
\frac{2x^{2}+y^{2}+4xy-yy}{xy\left(x+y\right)}
Since \frac{2x^{2}+y^{2}+4xy}{xy\left(x+y\right)} and \frac{yy}{xy\left(x+y\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{2x^{2}+y^{2}+4xy-y^{2}}{xy\left(x+y\right)}
Do the multiplications in 2x^{2}+y^{2}+4xy-yy.
\frac{2x^{2}+4xy}{xy\left(x+y\right)}
Combine like terms in 2x^{2}+y^{2}+4xy-y^{2}.
\frac{2x\left(x+2y\right)}{xy\left(x+y\right)}
Factor the expressions that are not already factored in \frac{2x^{2}+4xy}{xy\left(x+y\right)}.
\frac{2\left(x+2y\right)}{y\left(x+y\right)}
Cancel out x in both numerator and denominator.
\frac{2\left(x+2y\right)}{xy+y^{2}}
Expand y\left(x+y\right).
\frac{2x+4y}{xy+y^{2}}
Use the distributive property to multiply 2 by x+2y.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}