Solve for A (complex solution)
\left\{\begin{matrix}\\A=1\text{, }&\text{unconditionally}\\A\in \mathrm{C}\text{, }&x=-y\end{matrix}\right.
Solve for x (complex solution)
\left\{\begin{matrix}\\x=-y\text{, }&\text{unconditionally}\\x\in \mathrm{C}\text{, }&A=1\end{matrix}\right.
Solve for A
\left\{\begin{matrix}\\A=1\text{, }&\text{unconditionally}\\A\in \mathrm{R}\text{, }&x=-y\end{matrix}\right.
Solve for x
\left\{\begin{matrix}\\x=-y\text{, }&\text{unconditionally}\\x\in \mathrm{R}\text{, }&A=1\end{matrix}\right.
Graph
Quiz
Linear Equation
5 problems similar to:
\frac { x + y } { 2 } = \frac { A } { 2 } \times ( x + y )
Share
Copied to clipboard
x+y=A\left(x+y\right)
Multiply both sides of the equation by 2.
x+y=Ax+Ay
Use the distributive property to multiply A by x+y.
Ax+Ay=x+y
Swap sides so that all variable terms are on the left hand side.
\left(x+y\right)A=x+y
Combine all terms containing A.
\frac{\left(x+y\right)A}{x+y}=\frac{x+y}{x+y}
Divide both sides by x+y.
A=\frac{x+y}{x+y}
Dividing by x+y undoes the multiplication by x+y.
A=1
Divide x+y by x+y.
x+y=A\left(x+y\right)
Multiply both sides of the equation by 2.
x+y=Ax+Ay
Use the distributive property to multiply A by x+y.
x+y-Ax=Ay
Subtract Ax from both sides.
x-Ax=Ay-y
Subtract y from both sides.
\left(1-A\right)x=Ay-y
Combine all terms containing x.
\frac{\left(1-A\right)x}{1-A}=\frac{y\left(A-1\right)}{1-A}
Divide both sides by 1-A.
x=\frac{y\left(A-1\right)}{1-A}
Dividing by 1-A undoes the multiplication by 1-A.
x=-y
Divide y\left(-1+A\right) by 1-A.
x+y=A\left(x+y\right)
Multiply both sides of the equation by 2.
x+y=Ax+Ay
Use the distributive property to multiply A by x+y.
Ax+Ay=x+y
Swap sides so that all variable terms are on the left hand side.
\left(x+y\right)A=x+y
Combine all terms containing A.
\frac{\left(x+y\right)A}{x+y}=\frac{x+y}{x+y}
Divide both sides by x+y.
A=\frac{x+y}{x+y}
Dividing by x+y undoes the multiplication by x+y.
A=1
Divide x+y by x+y.
x+y=A\left(x+y\right)
Multiply both sides of the equation by 2.
x+y=Ax+Ay
Use the distributive property to multiply A by x+y.
x+y-Ax=Ay
Subtract Ax from both sides.
x-Ax=Ay-y
Subtract y from both sides.
\left(1-A\right)x=Ay-y
Combine all terms containing x.
\frac{\left(1-A\right)x}{1-A}=\frac{y\left(A-1\right)}{1-A}
Divide both sides by 1-A.
x=\frac{y\left(A-1\right)}{1-A}
Dividing by 1-A undoes the multiplication by 1-A.
x=-y
Divide y\left(-1+A\right) by 1-A.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}