Evaluate
\frac{4\left(x^{6}+9x^{5}+40x^{4}+96x^{3}+78x^{2}-136x-200\right)}{5\left(x+2\right)^{2}}
Expand
\frac{4\left(x^{6}+9x^{5}+40x^{4}+96x^{3}+78x^{2}-136x-200\right)}{5\left(x+2\right)^{2}}
Graph
Quiz
Polynomial
\frac { x + x ^ { 2 } } { 5 } ( \frac { 16 + 8 x + 2 x ^ { 2 } } { 2 + x } ) ^ { 2 } - 40
Share
Copied to clipboard
\frac{x+x^{2}}{5}\times \frac{\left(16+8x+2x^{2}\right)^{2}}{\left(2+x\right)^{2}}-40
To raise \frac{16+8x+2x^{2}}{2+x} to a power, raise both numerator and denominator to the power and then divide.
\frac{\left(x+x^{2}\right)\left(16+8x+2x^{2}\right)^{2}}{5\left(2+x\right)^{2}}-40
Multiply \frac{x+x^{2}}{5} times \frac{\left(16+8x+2x^{2}\right)^{2}}{\left(2+x\right)^{2}} by multiplying numerator times numerator and denominator times denominator.
\frac{\left(x+x^{2}\right)\left(16+8x+2x^{2}\right)^{2}}{5\left(2+x\right)^{2}}-\frac{40\times 5\left(2+x\right)^{2}}{5\left(2+x\right)^{2}}
To add or subtract expressions, expand them to make their denominators the same. Multiply 40 times \frac{5\left(2+x\right)^{2}}{5\left(2+x\right)^{2}}.
\frac{\left(x+x^{2}\right)\left(16+8x+2x^{2}\right)^{2}-40\times 5\left(2+x\right)^{2}}{5\left(2+x\right)^{2}}
Since \frac{\left(x+x^{2}\right)\left(16+8x+2x^{2}\right)^{2}}{5\left(2+x\right)^{2}} and \frac{40\times 5\left(2+x\right)^{2}}{5\left(2+x\right)^{2}} have the same denominator, subtract them by subtracting their numerators.
\frac{256x+256x^{2}+128x^{3}+32x^{4}+4x^{5}+256x^{2}+256x^{3}+128x^{4}+32x^{5}+4x^{6}-800-800x-200x^{2}}{5\left(2+x\right)^{2}}
Do the multiplications in \left(x+x^{2}\right)\left(16+8x+2x^{2}\right)^{2}-40\times 5\left(2+x\right)^{2}.
\frac{4x^{6}-544x+312x^{2}+384x^{3}+160x^{4}+36x^{5}-800}{5\left(2+x\right)^{2}}
Combine like terms in 256x+256x^{2}+128x^{3}+32x^{4}+4x^{5}+256x^{2}+256x^{3}+128x^{4}+32x^{5}+4x^{6}-800-800x-200x^{2}.
\frac{4x^{6}-544x+312x^{2}+384x^{3}+160x^{4}+36x^{5}-800}{5x^{2}+20x+20}
Expand 5\left(2+x\right)^{2}.
\frac{x+x^{2}}{5}\times \frac{\left(16+8x+2x^{2}\right)^{2}}{\left(2+x\right)^{2}}-40
To raise \frac{16+8x+2x^{2}}{2+x} to a power, raise both numerator and denominator to the power and then divide.
\frac{\left(x+x^{2}\right)\left(16+8x+2x^{2}\right)^{2}}{5\left(2+x\right)^{2}}-40
Multiply \frac{x+x^{2}}{5} times \frac{\left(16+8x+2x^{2}\right)^{2}}{\left(2+x\right)^{2}} by multiplying numerator times numerator and denominator times denominator.
\frac{\left(x+x^{2}\right)\left(16+8x+2x^{2}\right)^{2}}{5\left(2+x\right)^{2}}-\frac{40\times 5\left(2+x\right)^{2}}{5\left(2+x\right)^{2}}
To add or subtract expressions, expand them to make their denominators the same. Multiply 40 times \frac{5\left(2+x\right)^{2}}{5\left(2+x\right)^{2}}.
\frac{\left(x+x^{2}\right)\left(16+8x+2x^{2}\right)^{2}-40\times 5\left(2+x\right)^{2}}{5\left(2+x\right)^{2}}
Since \frac{\left(x+x^{2}\right)\left(16+8x+2x^{2}\right)^{2}}{5\left(2+x\right)^{2}} and \frac{40\times 5\left(2+x\right)^{2}}{5\left(2+x\right)^{2}} have the same denominator, subtract them by subtracting their numerators.
\frac{256x+256x^{2}+128x^{3}+32x^{4}+4x^{5}+256x^{2}+256x^{3}+128x^{4}+32x^{5}+4x^{6}-800-800x-200x^{2}}{5\left(2+x\right)^{2}}
Do the multiplications in \left(x+x^{2}\right)\left(16+8x+2x^{2}\right)^{2}-40\times 5\left(2+x\right)^{2}.
\frac{4x^{6}-544x+312x^{2}+384x^{3}+160x^{4}+36x^{5}-800}{5\left(2+x\right)^{2}}
Combine like terms in 256x+256x^{2}+128x^{3}+32x^{4}+4x^{5}+256x^{2}+256x^{3}+128x^{4}+32x^{5}+4x^{6}-800-800x-200x^{2}.
\frac{4x^{6}-544x+312x^{2}+384x^{3}+160x^{4}+36x^{5}-800}{5x^{2}+20x+20}
Expand 5\left(2+x\right)^{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}