Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{x+x^{2}}{5}\times \frac{\left(16+8x+2x^{2}\right)^{2}}{\left(2+x\right)^{2}}-40
To raise \frac{16+8x+2x^{2}}{2+x} to a power, raise both numerator and denominator to the power and then divide.
\frac{\left(x+x^{2}\right)\left(16+8x+2x^{2}\right)^{2}}{5\left(2+x\right)^{2}}-40
Multiply \frac{x+x^{2}}{5} times \frac{\left(16+8x+2x^{2}\right)^{2}}{\left(2+x\right)^{2}} by multiplying numerator times numerator and denominator times denominator.
\frac{\left(x+x^{2}\right)\left(16+8x+2x^{2}\right)^{2}}{5\left(2+x\right)^{2}}-\frac{40\times 5\left(2+x\right)^{2}}{5\left(2+x\right)^{2}}
To add or subtract expressions, expand them to make their denominators the same. Multiply 40 times \frac{5\left(2+x\right)^{2}}{5\left(2+x\right)^{2}}.
\frac{\left(x+x^{2}\right)\left(16+8x+2x^{2}\right)^{2}-40\times 5\left(2+x\right)^{2}}{5\left(2+x\right)^{2}}
Since \frac{\left(x+x^{2}\right)\left(16+8x+2x^{2}\right)^{2}}{5\left(2+x\right)^{2}} and \frac{40\times 5\left(2+x\right)^{2}}{5\left(2+x\right)^{2}} have the same denominator, subtract them by subtracting their numerators.
\frac{256x+256x^{2}+128x^{3}+32x^{4}+4x^{5}+256x^{2}+256x^{3}+128x^{4}+32x^{5}+4x^{6}-800-800x-200x^{2}}{5\left(2+x\right)^{2}}
Do the multiplications in \left(x+x^{2}\right)\left(16+8x+2x^{2}\right)^{2}-40\times 5\left(2+x\right)^{2}.
\frac{4x^{6}-544x+312x^{2}+384x^{3}+160x^{4}+36x^{5}-800}{5\left(2+x\right)^{2}}
Combine like terms in 256x+256x^{2}+128x^{3}+32x^{4}+4x^{5}+256x^{2}+256x^{3}+128x^{4}+32x^{5}+4x^{6}-800-800x-200x^{2}.
\frac{4x^{6}-544x+312x^{2}+384x^{3}+160x^{4}+36x^{5}-800}{5x^{2}+20x+20}
Expand 5\left(2+x\right)^{2}.
\frac{x+x^{2}}{5}\times \frac{\left(16+8x+2x^{2}\right)^{2}}{\left(2+x\right)^{2}}-40
To raise \frac{16+8x+2x^{2}}{2+x} to a power, raise both numerator and denominator to the power and then divide.
\frac{\left(x+x^{2}\right)\left(16+8x+2x^{2}\right)^{2}}{5\left(2+x\right)^{2}}-40
Multiply \frac{x+x^{2}}{5} times \frac{\left(16+8x+2x^{2}\right)^{2}}{\left(2+x\right)^{2}} by multiplying numerator times numerator and denominator times denominator.
\frac{\left(x+x^{2}\right)\left(16+8x+2x^{2}\right)^{2}}{5\left(2+x\right)^{2}}-\frac{40\times 5\left(2+x\right)^{2}}{5\left(2+x\right)^{2}}
To add or subtract expressions, expand them to make their denominators the same. Multiply 40 times \frac{5\left(2+x\right)^{2}}{5\left(2+x\right)^{2}}.
\frac{\left(x+x^{2}\right)\left(16+8x+2x^{2}\right)^{2}-40\times 5\left(2+x\right)^{2}}{5\left(2+x\right)^{2}}
Since \frac{\left(x+x^{2}\right)\left(16+8x+2x^{2}\right)^{2}}{5\left(2+x\right)^{2}} and \frac{40\times 5\left(2+x\right)^{2}}{5\left(2+x\right)^{2}} have the same denominator, subtract them by subtracting their numerators.
\frac{256x+256x^{2}+128x^{3}+32x^{4}+4x^{5}+256x^{2}+256x^{3}+128x^{4}+32x^{5}+4x^{6}-800-800x-200x^{2}}{5\left(2+x\right)^{2}}
Do the multiplications in \left(x+x^{2}\right)\left(16+8x+2x^{2}\right)^{2}-40\times 5\left(2+x\right)^{2}.
\frac{4x^{6}-544x+312x^{2}+384x^{3}+160x^{4}+36x^{5}-800}{5\left(2+x\right)^{2}}
Combine like terms in 256x+256x^{2}+128x^{3}+32x^{4}+4x^{5}+256x^{2}+256x^{3}+128x^{4}+32x^{5}+4x^{6}-800-800x-200x^{2}.
\frac{4x^{6}-544x+312x^{2}+384x^{3}+160x^{4}+36x^{5}-800}{5x^{2}+20x+20}
Expand 5\left(2+x\right)^{2}.