Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{x+7}{\left(x-9\right)\left(x+5\right)}+\frac{x+4}{\left(x-3\right)\left(x+5\right)}
Factor x^{2}-4x-45. Factor x^{2}+2x-15.
\frac{\left(x+7\right)\left(x-3\right)}{\left(x-9\right)\left(x-3\right)\left(x+5\right)}+\frac{\left(x+4\right)\left(x-9\right)}{\left(x-9\right)\left(x-3\right)\left(x+5\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(x-9\right)\left(x+5\right) and \left(x-3\right)\left(x+5\right) is \left(x-9\right)\left(x-3\right)\left(x+5\right). Multiply \frac{x+7}{\left(x-9\right)\left(x+5\right)} times \frac{x-3}{x-3}. Multiply \frac{x+4}{\left(x-3\right)\left(x+5\right)} times \frac{x-9}{x-9}.
\frac{\left(x+7\right)\left(x-3\right)+\left(x+4\right)\left(x-9\right)}{\left(x-9\right)\left(x-3\right)\left(x+5\right)}
Since \frac{\left(x+7\right)\left(x-3\right)}{\left(x-9\right)\left(x-3\right)\left(x+5\right)} and \frac{\left(x+4\right)\left(x-9\right)}{\left(x-9\right)\left(x-3\right)\left(x+5\right)} have the same denominator, add them by adding their numerators.
\frac{x^{2}-3x+7x-21+x^{2}-9x+4x-36}{\left(x-9\right)\left(x-3\right)\left(x+5\right)}
Do the multiplications in \left(x+7\right)\left(x-3\right)+\left(x+4\right)\left(x-9\right).
\frac{2x^{2}-x-57}{\left(x-9\right)\left(x-3\right)\left(x+5\right)}
Combine like terms in x^{2}-3x+7x-21+x^{2}-9x+4x-36.
\frac{2x^{2}-x-57}{x^{3}-7x^{2}-33x+135}
Expand \left(x-9\right)\left(x-3\right)\left(x+5\right).
\frac{x+7}{\left(x-9\right)\left(x+5\right)}+\frac{x+4}{\left(x-3\right)\left(x+5\right)}
Factor x^{2}-4x-45. Factor x^{2}+2x-15.
\frac{\left(x+7\right)\left(x-3\right)}{\left(x-9\right)\left(x-3\right)\left(x+5\right)}+\frac{\left(x+4\right)\left(x-9\right)}{\left(x-9\right)\left(x-3\right)\left(x+5\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(x-9\right)\left(x+5\right) and \left(x-3\right)\left(x+5\right) is \left(x-9\right)\left(x-3\right)\left(x+5\right). Multiply \frac{x+7}{\left(x-9\right)\left(x+5\right)} times \frac{x-3}{x-3}. Multiply \frac{x+4}{\left(x-3\right)\left(x+5\right)} times \frac{x-9}{x-9}.
\frac{\left(x+7\right)\left(x-3\right)+\left(x+4\right)\left(x-9\right)}{\left(x-9\right)\left(x-3\right)\left(x+5\right)}
Since \frac{\left(x+7\right)\left(x-3\right)}{\left(x-9\right)\left(x-3\right)\left(x+5\right)} and \frac{\left(x+4\right)\left(x-9\right)}{\left(x-9\right)\left(x-3\right)\left(x+5\right)} have the same denominator, add them by adding their numerators.
\frac{x^{2}-3x+7x-21+x^{2}-9x+4x-36}{\left(x-9\right)\left(x-3\right)\left(x+5\right)}
Do the multiplications in \left(x+7\right)\left(x-3\right)+\left(x+4\right)\left(x-9\right).
\frac{2x^{2}-x-57}{\left(x-9\right)\left(x-3\right)\left(x+5\right)}
Combine like terms in x^{2}-3x+7x-21+x^{2}-9x+4x-36.
\frac{2x^{2}-x-57}{x^{3}-7x^{2}-33x+135}
Expand \left(x-9\right)\left(x-3\right)\left(x+5\right).