Solve for x
x=-\frac{1}{4}=-0.25
x=-3
Graph
Share
Copied to clipboard
\left(x-1\right)\left(x+7\right)=\left(x+4\right)\left(x+3\right)+\left(x-1\right)\left(x+4\right)\times 4
Variable x cannot be equal to any of the values -4,1 since division by zero is not defined. Multiply both sides of the equation by \left(x-1\right)\left(x+4\right), the least common multiple of x+4,x-1.
x^{2}+6x-7=\left(x+4\right)\left(x+3\right)+\left(x-1\right)\left(x+4\right)\times 4
Use the distributive property to multiply x-1 by x+7 and combine like terms.
x^{2}+6x-7=x^{2}+7x+12+\left(x-1\right)\left(x+4\right)\times 4
Use the distributive property to multiply x+4 by x+3 and combine like terms.
x^{2}+6x-7=x^{2}+7x+12+\left(x^{2}+3x-4\right)\times 4
Use the distributive property to multiply x-1 by x+4 and combine like terms.
x^{2}+6x-7=x^{2}+7x+12+4x^{2}+12x-16
Use the distributive property to multiply x^{2}+3x-4 by 4.
x^{2}+6x-7=5x^{2}+7x+12+12x-16
Combine x^{2} and 4x^{2} to get 5x^{2}.
x^{2}+6x-7=5x^{2}+19x+12-16
Combine 7x and 12x to get 19x.
x^{2}+6x-7=5x^{2}+19x-4
Subtract 16 from 12 to get -4.
x^{2}+6x-7-5x^{2}=19x-4
Subtract 5x^{2} from both sides.
-4x^{2}+6x-7=19x-4
Combine x^{2} and -5x^{2} to get -4x^{2}.
-4x^{2}+6x-7-19x=-4
Subtract 19x from both sides.
-4x^{2}-13x-7=-4
Combine 6x and -19x to get -13x.
-4x^{2}-13x-7+4=0
Add 4 to both sides.
-4x^{2}-13x-3=0
Add -7 and 4 to get -3.
x=\frac{-\left(-13\right)±\sqrt{\left(-13\right)^{2}-4\left(-4\right)\left(-3\right)}}{2\left(-4\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -4 for a, -13 for b, and -3 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-13\right)±\sqrt{169-4\left(-4\right)\left(-3\right)}}{2\left(-4\right)}
Square -13.
x=\frac{-\left(-13\right)±\sqrt{169+16\left(-3\right)}}{2\left(-4\right)}
Multiply -4 times -4.
x=\frac{-\left(-13\right)±\sqrt{169-48}}{2\left(-4\right)}
Multiply 16 times -3.
x=\frac{-\left(-13\right)±\sqrt{121}}{2\left(-4\right)}
Add 169 to -48.
x=\frac{-\left(-13\right)±11}{2\left(-4\right)}
Take the square root of 121.
x=\frac{13±11}{2\left(-4\right)}
The opposite of -13 is 13.
x=\frac{13±11}{-8}
Multiply 2 times -4.
x=\frac{24}{-8}
Now solve the equation x=\frac{13±11}{-8} when ± is plus. Add 13 to 11.
x=-3
Divide 24 by -8.
x=\frac{2}{-8}
Now solve the equation x=\frac{13±11}{-8} when ± is minus. Subtract 11 from 13.
x=-\frac{1}{4}
Reduce the fraction \frac{2}{-8} to lowest terms by extracting and canceling out 2.
x=-3 x=-\frac{1}{4}
The equation is now solved.
\left(x-1\right)\left(x+7\right)=\left(x+4\right)\left(x+3\right)+\left(x-1\right)\left(x+4\right)\times 4
Variable x cannot be equal to any of the values -4,1 since division by zero is not defined. Multiply both sides of the equation by \left(x-1\right)\left(x+4\right), the least common multiple of x+4,x-1.
x^{2}+6x-7=\left(x+4\right)\left(x+3\right)+\left(x-1\right)\left(x+4\right)\times 4
Use the distributive property to multiply x-1 by x+7 and combine like terms.
x^{2}+6x-7=x^{2}+7x+12+\left(x-1\right)\left(x+4\right)\times 4
Use the distributive property to multiply x+4 by x+3 and combine like terms.
x^{2}+6x-7=x^{2}+7x+12+\left(x^{2}+3x-4\right)\times 4
Use the distributive property to multiply x-1 by x+4 and combine like terms.
x^{2}+6x-7=x^{2}+7x+12+4x^{2}+12x-16
Use the distributive property to multiply x^{2}+3x-4 by 4.
x^{2}+6x-7=5x^{2}+7x+12+12x-16
Combine x^{2} and 4x^{2} to get 5x^{2}.
x^{2}+6x-7=5x^{2}+19x+12-16
Combine 7x and 12x to get 19x.
x^{2}+6x-7=5x^{2}+19x-4
Subtract 16 from 12 to get -4.
x^{2}+6x-7-5x^{2}=19x-4
Subtract 5x^{2} from both sides.
-4x^{2}+6x-7=19x-4
Combine x^{2} and -5x^{2} to get -4x^{2}.
-4x^{2}+6x-7-19x=-4
Subtract 19x from both sides.
-4x^{2}-13x-7=-4
Combine 6x and -19x to get -13x.
-4x^{2}-13x=-4+7
Add 7 to both sides.
-4x^{2}-13x=3
Add -4 and 7 to get 3.
\frac{-4x^{2}-13x}{-4}=\frac{3}{-4}
Divide both sides by -4.
x^{2}+\left(-\frac{13}{-4}\right)x=\frac{3}{-4}
Dividing by -4 undoes the multiplication by -4.
x^{2}+\frac{13}{4}x=\frac{3}{-4}
Divide -13 by -4.
x^{2}+\frac{13}{4}x=-\frac{3}{4}
Divide 3 by -4.
x^{2}+\frac{13}{4}x+\left(\frac{13}{8}\right)^{2}=-\frac{3}{4}+\left(\frac{13}{8}\right)^{2}
Divide \frac{13}{4}, the coefficient of the x term, by 2 to get \frac{13}{8}. Then add the square of \frac{13}{8} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{13}{4}x+\frac{169}{64}=-\frac{3}{4}+\frac{169}{64}
Square \frac{13}{8} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{13}{4}x+\frac{169}{64}=\frac{121}{64}
Add -\frac{3}{4} to \frac{169}{64} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{13}{8}\right)^{2}=\frac{121}{64}
Factor x^{2}+\frac{13}{4}x+\frac{169}{64}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{13}{8}\right)^{2}}=\sqrt{\frac{121}{64}}
Take the square root of both sides of the equation.
x+\frac{13}{8}=\frac{11}{8} x+\frac{13}{8}=-\frac{11}{8}
Simplify.
x=-\frac{1}{4} x=-3
Subtract \frac{13}{8} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}