Solve for x
x = \frac{19}{7} = 2\frac{5}{7} \approx 2.714285714
Graph
Share
Copied to clipboard
\left(x+6\right)\left(x+6\right)+\left(x-5\right)\left(x-5\right)=2x^{2}+23x+4
Variable x cannot be equal to any of the values -6,5 since division by zero is not defined. Multiply both sides of the equation by \left(x-5\right)\left(x+6\right), the least common multiple of x-5,x+6,x^{2}+x-30.
\left(x+6\right)^{2}+\left(x-5\right)\left(x-5\right)=2x^{2}+23x+4
Multiply x+6 and x+6 to get \left(x+6\right)^{2}.
\left(x+6\right)^{2}+\left(x-5\right)^{2}=2x^{2}+23x+4
Multiply x-5 and x-5 to get \left(x-5\right)^{2}.
x^{2}+12x+36+\left(x-5\right)^{2}=2x^{2}+23x+4
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+6\right)^{2}.
x^{2}+12x+36+x^{2}-10x+25=2x^{2}+23x+4
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-5\right)^{2}.
2x^{2}+12x+36-10x+25=2x^{2}+23x+4
Combine x^{2} and x^{2} to get 2x^{2}.
2x^{2}+2x+36+25=2x^{2}+23x+4
Combine 12x and -10x to get 2x.
2x^{2}+2x+61=2x^{2}+23x+4
Add 36 and 25 to get 61.
2x^{2}+2x+61-2x^{2}=23x+4
Subtract 2x^{2} from both sides.
2x+61=23x+4
Combine 2x^{2} and -2x^{2} to get 0.
2x+61-23x=4
Subtract 23x from both sides.
-21x+61=4
Combine 2x and -23x to get -21x.
-21x=4-61
Subtract 61 from both sides.
-21x=-57
Subtract 61 from 4 to get -57.
x=\frac{-57}{-21}
Divide both sides by -21.
x=\frac{19}{7}
Reduce the fraction \frac{-57}{-21} to lowest terms by extracting and canceling out -3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}