Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\left(x+6\right)\left(x+6\right)+\left(x-5\right)\left(x-5\right)=2x^{2}+23x+4
Variable x cannot be equal to any of the values -6,5 since division by zero is not defined. Multiply both sides of the equation by \left(x-5\right)\left(x+6\right), the least common multiple of x-5,x+6,x^{2}+x-30.
\left(x+6\right)^{2}+\left(x-5\right)\left(x-5\right)=2x^{2}+23x+4
Multiply x+6 and x+6 to get \left(x+6\right)^{2}.
\left(x+6\right)^{2}+\left(x-5\right)^{2}=2x^{2}+23x+4
Multiply x-5 and x-5 to get \left(x-5\right)^{2}.
x^{2}+12x+36+\left(x-5\right)^{2}=2x^{2}+23x+4
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+6\right)^{2}.
x^{2}+12x+36+x^{2}-10x+25=2x^{2}+23x+4
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-5\right)^{2}.
2x^{2}+12x+36-10x+25=2x^{2}+23x+4
Combine x^{2} and x^{2} to get 2x^{2}.
2x^{2}+2x+36+25=2x^{2}+23x+4
Combine 12x and -10x to get 2x.
2x^{2}+2x+61=2x^{2}+23x+4
Add 36 and 25 to get 61.
2x^{2}+2x+61-2x^{2}=23x+4
Subtract 2x^{2} from both sides.
2x+61=23x+4
Combine 2x^{2} and -2x^{2} to get 0.
2x+61-23x=4
Subtract 23x from both sides.
-21x+61=4
Combine 2x and -23x to get -21x.
-21x=4-61
Subtract 61 from both sides.
-21x=-57
Subtract 61 from 4 to get -57.
x=\frac{-57}{-21}
Divide both sides by -21.
x=\frac{19}{7}
Reduce the fraction \frac{-57}{-21} to lowest terms by extracting and canceling out -3.