Evaluate
\frac{1-2x}{x^{2}-64}
Expand
\frac{1-2x}{x^{2}-64}
Graph
Share
Copied to clipboard
\frac{x+6}{x+8}+\frac{x-7}{\left(x-8\right)\left(x+8\right)}-\frac{x-7}{x-8}
Factor x^{2}-64.
\frac{\left(x+6\right)\left(x-8\right)}{\left(x-8\right)\left(x+8\right)}+\frac{x-7}{\left(x-8\right)\left(x+8\right)}-\frac{x-7}{x-8}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x+8 and \left(x-8\right)\left(x+8\right) is \left(x-8\right)\left(x+8\right). Multiply \frac{x+6}{x+8} times \frac{x-8}{x-8}.
\frac{\left(x+6\right)\left(x-8\right)+x-7}{\left(x-8\right)\left(x+8\right)}-\frac{x-7}{x-8}
Since \frac{\left(x+6\right)\left(x-8\right)}{\left(x-8\right)\left(x+8\right)} and \frac{x-7}{\left(x-8\right)\left(x+8\right)} have the same denominator, add them by adding their numerators.
\frac{x^{2}-8x+6x-48+x-7}{\left(x-8\right)\left(x+8\right)}-\frac{x-7}{x-8}
Do the multiplications in \left(x+6\right)\left(x-8\right)+x-7.
\frac{x^{2}-x-55}{\left(x-8\right)\left(x+8\right)}-\frac{x-7}{x-8}
Combine like terms in x^{2}-8x+6x-48+x-7.
\frac{x^{2}-x-55}{\left(x-8\right)\left(x+8\right)}-\frac{\left(x-7\right)\left(x+8\right)}{\left(x-8\right)\left(x+8\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(x-8\right)\left(x+8\right) and x-8 is \left(x-8\right)\left(x+8\right). Multiply \frac{x-7}{x-8} times \frac{x+8}{x+8}.
\frac{x^{2}-x-55-\left(x-7\right)\left(x+8\right)}{\left(x-8\right)\left(x+8\right)}
Since \frac{x^{2}-x-55}{\left(x-8\right)\left(x+8\right)} and \frac{\left(x-7\right)\left(x+8\right)}{\left(x-8\right)\left(x+8\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{x^{2}-x-55-x^{2}-8x+7x+56}{\left(x-8\right)\left(x+8\right)}
Do the multiplications in x^{2}-x-55-\left(x-7\right)\left(x+8\right).
\frac{-2x+1}{\left(x-8\right)\left(x+8\right)}
Combine like terms in x^{2}-x-55-x^{2}-8x+7x+56.
\frac{-2x+1}{x^{2}-64}
Expand \left(x-8\right)\left(x+8\right).
\frac{x+6}{x+8}+\frac{x-7}{\left(x-8\right)\left(x+8\right)}-\frac{x-7}{x-8}
Factor x^{2}-64.
\frac{\left(x+6\right)\left(x-8\right)}{\left(x-8\right)\left(x+8\right)}+\frac{x-7}{\left(x-8\right)\left(x+8\right)}-\frac{x-7}{x-8}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x+8 and \left(x-8\right)\left(x+8\right) is \left(x-8\right)\left(x+8\right). Multiply \frac{x+6}{x+8} times \frac{x-8}{x-8}.
\frac{\left(x+6\right)\left(x-8\right)+x-7}{\left(x-8\right)\left(x+8\right)}-\frac{x-7}{x-8}
Since \frac{\left(x+6\right)\left(x-8\right)}{\left(x-8\right)\left(x+8\right)} and \frac{x-7}{\left(x-8\right)\left(x+8\right)} have the same denominator, add them by adding their numerators.
\frac{x^{2}-8x+6x-48+x-7}{\left(x-8\right)\left(x+8\right)}-\frac{x-7}{x-8}
Do the multiplications in \left(x+6\right)\left(x-8\right)+x-7.
\frac{x^{2}-x-55}{\left(x-8\right)\left(x+8\right)}-\frac{x-7}{x-8}
Combine like terms in x^{2}-8x+6x-48+x-7.
\frac{x^{2}-x-55}{\left(x-8\right)\left(x+8\right)}-\frac{\left(x-7\right)\left(x+8\right)}{\left(x-8\right)\left(x+8\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(x-8\right)\left(x+8\right) and x-8 is \left(x-8\right)\left(x+8\right). Multiply \frac{x-7}{x-8} times \frac{x+8}{x+8}.
\frac{x^{2}-x-55-\left(x-7\right)\left(x+8\right)}{\left(x-8\right)\left(x+8\right)}
Since \frac{x^{2}-x-55}{\left(x-8\right)\left(x+8\right)} and \frac{\left(x-7\right)\left(x+8\right)}{\left(x-8\right)\left(x+8\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{x^{2}-x-55-x^{2}-8x+7x+56}{\left(x-8\right)\left(x+8\right)}
Do the multiplications in x^{2}-x-55-\left(x-7\right)\left(x+8\right).
\frac{-2x+1}{\left(x-8\right)\left(x+8\right)}
Combine like terms in x^{2}-x-55-x^{2}-8x+7x+56.
\frac{-2x+1}{x^{2}-64}
Expand \left(x-8\right)\left(x+8\right).
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}