Solve for x
x=6
Graph
Quiz
Polynomial
5 problems similar to:
\frac { x + 6 } { x + 5 } + \frac { 10 } { x ^ { 2 } - 25 } = 2
Share
Copied to clipboard
\left(x-5\right)\left(x+6\right)+10=2\left(x-5\right)\left(x+5\right)
Variable x cannot be equal to any of the values -5,5 since division by zero is not defined. Multiply both sides of the equation by \left(x-5\right)\left(x+5\right), the least common multiple of x+5,x^{2}-25.
x^{2}+x-30+10=2\left(x-5\right)\left(x+5\right)
Use the distributive property to multiply x-5 by x+6 and combine like terms.
x^{2}+x-20=2\left(x-5\right)\left(x+5\right)
Add -30 and 10 to get -20.
x^{2}+x-20=\left(2x-10\right)\left(x+5\right)
Use the distributive property to multiply 2 by x-5.
x^{2}+x-20=2x^{2}-50
Use the distributive property to multiply 2x-10 by x+5 and combine like terms.
x^{2}+x-20-2x^{2}=-50
Subtract 2x^{2} from both sides.
-x^{2}+x-20=-50
Combine x^{2} and -2x^{2} to get -x^{2}.
-x^{2}+x-20+50=0
Add 50 to both sides.
-x^{2}+x+30=0
Add -20 and 50 to get 30.
a+b=1 ab=-30=-30
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as -x^{2}+ax+bx+30. To find a and b, set up a system to be solved.
-1,30 -2,15 -3,10 -5,6
Since ab is negative, a and b have the opposite signs. Since a+b is positive, the positive number has greater absolute value than the negative. List all such integer pairs that give product -30.
-1+30=29 -2+15=13 -3+10=7 -5+6=1
Calculate the sum for each pair.
a=6 b=-5
The solution is the pair that gives sum 1.
\left(-x^{2}+6x\right)+\left(-5x+30\right)
Rewrite -x^{2}+x+30 as \left(-x^{2}+6x\right)+\left(-5x+30\right).
-x\left(x-6\right)-5\left(x-6\right)
Factor out -x in the first and -5 in the second group.
\left(x-6\right)\left(-x-5\right)
Factor out common term x-6 by using distributive property.
x=6 x=-5
To find equation solutions, solve x-6=0 and -x-5=0.
x=6
Variable x cannot be equal to -5.
\left(x-5\right)\left(x+6\right)+10=2\left(x-5\right)\left(x+5\right)
Variable x cannot be equal to any of the values -5,5 since division by zero is not defined. Multiply both sides of the equation by \left(x-5\right)\left(x+5\right), the least common multiple of x+5,x^{2}-25.
x^{2}+x-30+10=2\left(x-5\right)\left(x+5\right)
Use the distributive property to multiply x-5 by x+6 and combine like terms.
x^{2}+x-20=2\left(x-5\right)\left(x+5\right)
Add -30 and 10 to get -20.
x^{2}+x-20=\left(2x-10\right)\left(x+5\right)
Use the distributive property to multiply 2 by x-5.
x^{2}+x-20=2x^{2}-50
Use the distributive property to multiply 2x-10 by x+5 and combine like terms.
x^{2}+x-20-2x^{2}=-50
Subtract 2x^{2} from both sides.
-x^{2}+x-20=-50
Combine x^{2} and -2x^{2} to get -x^{2}.
-x^{2}+x-20+50=0
Add 50 to both sides.
-x^{2}+x+30=0
Add -20 and 50 to get 30.
x=\frac{-1±\sqrt{1^{2}-4\left(-1\right)\times 30}}{2\left(-1\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -1 for a, 1 for b, and 30 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-1±\sqrt{1-4\left(-1\right)\times 30}}{2\left(-1\right)}
Square 1.
x=\frac{-1±\sqrt{1+4\times 30}}{2\left(-1\right)}
Multiply -4 times -1.
x=\frac{-1±\sqrt{1+120}}{2\left(-1\right)}
Multiply 4 times 30.
x=\frac{-1±\sqrt{121}}{2\left(-1\right)}
Add 1 to 120.
x=\frac{-1±11}{2\left(-1\right)}
Take the square root of 121.
x=\frac{-1±11}{-2}
Multiply 2 times -1.
x=\frac{10}{-2}
Now solve the equation x=\frac{-1±11}{-2} when ± is plus. Add -1 to 11.
x=-5
Divide 10 by -2.
x=-\frac{12}{-2}
Now solve the equation x=\frac{-1±11}{-2} when ± is minus. Subtract 11 from -1.
x=6
Divide -12 by -2.
x=-5 x=6
The equation is now solved.
x=6
Variable x cannot be equal to -5.
\left(x-5\right)\left(x+6\right)+10=2\left(x-5\right)\left(x+5\right)
Variable x cannot be equal to any of the values -5,5 since division by zero is not defined. Multiply both sides of the equation by \left(x-5\right)\left(x+5\right), the least common multiple of x+5,x^{2}-25.
x^{2}+x-30+10=2\left(x-5\right)\left(x+5\right)
Use the distributive property to multiply x-5 by x+6 and combine like terms.
x^{2}+x-20=2\left(x-5\right)\left(x+5\right)
Add -30 and 10 to get -20.
x^{2}+x-20=\left(2x-10\right)\left(x+5\right)
Use the distributive property to multiply 2 by x-5.
x^{2}+x-20=2x^{2}-50
Use the distributive property to multiply 2x-10 by x+5 and combine like terms.
x^{2}+x-20-2x^{2}=-50
Subtract 2x^{2} from both sides.
-x^{2}+x-20=-50
Combine x^{2} and -2x^{2} to get -x^{2}.
-x^{2}+x=-50+20
Add 20 to both sides.
-x^{2}+x=-30
Add -50 and 20 to get -30.
\frac{-x^{2}+x}{-1}=-\frac{30}{-1}
Divide both sides by -1.
x^{2}+\frac{1}{-1}x=-\frac{30}{-1}
Dividing by -1 undoes the multiplication by -1.
x^{2}-x=-\frac{30}{-1}
Divide 1 by -1.
x^{2}-x=30
Divide -30 by -1.
x^{2}-x+\left(-\frac{1}{2}\right)^{2}=30+\left(-\frac{1}{2}\right)^{2}
Divide -1, the coefficient of the x term, by 2 to get -\frac{1}{2}. Then add the square of -\frac{1}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-x+\frac{1}{4}=30+\frac{1}{4}
Square -\frac{1}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}-x+\frac{1}{4}=\frac{121}{4}
Add 30 to \frac{1}{4}.
\left(x-\frac{1}{2}\right)^{2}=\frac{121}{4}
Factor x^{2}-x+\frac{1}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{1}{2}\right)^{2}}=\sqrt{\frac{121}{4}}
Take the square root of both sides of the equation.
x-\frac{1}{2}=\frac{11}{2} x-\frac{1}{2}=-\frac{11}{2}
Simplify.
x=6 x=-5
Add \frac{1}{2} to both sides of the equation.
x=6
Variable x cannot be equal to -5.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}