\frac { x + 6 } { 40 \% } = \frac { x } { 30 \% }
Solve for x
x=18
Graph
Share
Copied to clipboard
\frac{\left(x+6\right)\times 100}{40}=\frac{x}{\frac{30}{100}}
Divide x+6 by \frac{40}{100} by multiplying x+6 by the reciprocal of \frac{40}{100}.
\left(x+6\right)\times \frac{5}{2}=\frac{x}{\frac{30}{100}}
Divide \left(x+6\right)\times 100 by 40 to get \left(x+6\right)\times \frac{5}{2}.
x\times \frac{5}{2}+6\times \frac{5}{2}=\frac{x}{\frac{30}{100}}
Use the distributive property to multiply x+6 by \frac{5}{2}.
x\times \frac{5}{2}+\frac{6\times 5}{2}=\frac{x}{\frac{30}{100}}
Express 6\times \frac{5}{2} as a single fraction.
x\times \frac{5}{2}+\frac{30}{2}=\frac{x}{\frac{30}{100}}
Multiply 6 and 5 to get 30.
x\times \frac{5}{2}+15=\frac{x}{\frac{30}{100}}
Divide 30 by 2 to get 15.
x\times \frac{5}{2}+15=\frac{x\times 100}{30}
Divide x by \frac{30}{100} by multiplying x by the reciprocal of \frac{30}{100}.
x\times \frac{5}{2}+15=x\times \frac{10}{3}
Divide x\times 100 by 30 to get x\times \frac{10}{3}.
x\times \frac{5}{2}+15-x\times \frac{10}{3}=0
Subtract x\times \frac{10}{3} from both sides.
-\frac{5}{6}x+15=0
Combine x\times \frac{5}{2} and -x\times \frac{10}{3} to get -\frac{5}{6}x.
-\frac{5}{6}x=-15
Subtract 15 from both sides. Anything subtracted from zero gives its negation.
x=-15\left(-\frac{6}{5}\right)
Multiply both sides by -\frac{6}{5}, the reciprocal of -\frac{5}{6}.
x=\frac{-15\left(-6\right)}{5}
Express -15\left(-\frac{6}{5}\right) as a single fraction.
x=\frac{90}{5}
Multiply -15 and -6 to get 90.
x=18
Divide 90 by 5 to get 18.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}