Skip to main content
Solve for y (complex solution)
Tick mark Image
Solve for y
Tick mark Image
Solve for x (complex solution)
Tick mark Image
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\left(x-5\right)\left(x+6\right)+2\times 5=1y\times 2\left(x-5\right)\left(x+5\right)
Multiply both sides of the equation by 2\left(x-5\right)\left(x+5\right), the least common multiple of 2x+10,x^{2}-25.
x^{2}+x-30+2\times 5=1y\times 2\left(x-5\right)\left(x+5\right)
Use the distributive property to multiply x-5 by x+6 and combine like terms.
x^{2}+x-30+10=1y\times 2\left(x-5\right)\left(x+5\right)
Multiply 2 and 5 to get 10.
x^{2}+x-20=1y\times 2\left(x-5\right)\left(x+5\right)
Add -30 and 10 to get -20.
x^{2}+x-20=2y\left(x-5\right)\left(x+5\right)
Multiply 1 and 2 to get 2.
x^{2}+x-20=\left(2yx-10y\right)\left(x+5\right)
Use the distributive property to multiply 2y by x-5.
x^{2}+x-20=2yx^{2}-50y
Use the distributive property to multiply 2yx-10y by x+5 and combine like terms.
2yx^{2}-50y=x^{2}+x-20
Swap sides so that all variable terms are on the left hand side.
\left(2x^{2}-50\right)y=x^{2}+x-20
Combine all terms containing y.
\frac{\left(2x^{2}-50\right)y}{2x^{2}-50}=\frac{\left(x-4\right)\left(x+5\right)}{2x^{2}-50}
Divide both sides by -50+2x^{2}.
y=\frac{\left(x-4\right)\left(x+5\right)}{2x^{2}-50}
Dividing by -50+2x^{2} undoes the multiplication by -50+2x^{2}.
y=\frac{x-4}{2\left(x-5\right)}
Divide \left(-4+x\right)\left(5+x\right) by -50+2x^{2}.
\left(x-5\right)\left(x+6\right)+2\times 5=1y\times 2\left(x-5\right)\left(x+5\right)
Multiply both sides of the equation by 2\left(x-5\right)\left(x+5\right), the least common multiple of 2x+10,x^{2}-25.
x^{2}+x-30+2\times 5=1y\times 2\left(x-5\right)\left(x+5\right)
Use the distributive property to multiply x-5 by x+6 and combine like terms.
x^{2}+x-30+10=1y\times 2\left(x-5\right)\left(x+5\right)
Multiply 2 and 5 to get 10.
x^{2}+x-20=1y\times 2\left(x-5\right)\left(x+5\right)
Add -30 and 10 to get -20.
x^{2}+x-20=2y\left(x-5\right)\left(x+5\right)
Multiply 1 and 2 to get 2.
x^{2}+x-20=\left(2yx-10y\right)\left(x+5\right)
Use the distributive property to multiply 2y by x-5.
x^{2}+x-20=2yx^{2}-50y
Use the distributive property to multiply 2yx-10y by x+5 and combine like terms.
2yx^{2}-50y=x^{2}+x-20
Swap sides so that all variable terms are on the left hand side.
\left(2x^{2}-50\right)y=x^{2}+x-20
Combine all terms containing y.
\frac{\left(2x^{2}-50\right)y}{2x^{2}-50}=\frac{\left(x-4\right)\left(x+5\right)}{2x^{2}-50}
Divide both sides by -50+2x^{2}.
y=\frac{\left(x-4\right)\left(x+5\right)}{2x^{2}-50}
Dividing by -50+2x^{2} undoes the multiplication by -50+2x^{2}.
y=\frac{x-4}{2\left(x-5\right)}
Divide \left(-4+x\right)\left(5+x\right) by -50+2x^{2}.