Solve for y (complex solution)
y=-\frac{x-4}{2\left(5-x\right)}
x\neq -5\text{ and }x\neq 5
Solve for y
y=-\frac{x-4}{2\left(5-x\right)}
|x|\neq 5
Solve for x (complex solution)
x=-\frac{2\left(5y-2\right)}{1-2y}
y\neq \frac{9}{20}\text{ and }y\neq \frac{1}{2}
Solve for x
x=-\frac{2\left(5y-2\right)}{1-2y}
y\neq \frac{1}{2}\text{ and }y\neq \frac{9}{20}
Graph
Quiz
Algebra
5 problems similar to:
\frac { x + 6 } { 2 x + 10 } + \frac { 5 } { x ^ { 2 } - 25 } = 1 y
Share
Copied to clipboard
\left(x-5\right)\left(x+6\right)+2\times 5=1y\times 2\left(x-5\right)\left(x+5\right)
Multiply both sides of the equation by 2\left(x-5\right)\left(x+5\right), the least common multiple of 2x+10,x^{2}-25.
x^{2}+x-30+2\times 5=1y\times 2\left(x-5\right)\left(x+5\right)
Use the distributive property to multiply x-5 by x+6 and combine like terms.
x^{2}+x-30+10=1y\times 2\left(x-5\right)\left(x+5\right)
Multiply 2 and 5 to get 10.
x^{2}+x-20=1y\times 2\left(x-5\right)\left(x+5\right)
Add -30 and 10 to get -20.
x^{2}+x-20=2y\left(x-5\right)\left(x+5\right)
Multiply 1 and 2 to get 2.
x^{2}+x-20=\left(2yx-10y\right)\left(x+5\right)
Use the distributive property to multiply 2y by x-5.
x^{2}+x-20=2yx^{2}-50y
Use the distributive property to multiply 2yx-10y by x+5 and combine like terms.
2yx^{2}-50y=x^{2}+x-20
Swap sides so that all variable terms are on the left hand side.
\left(2x^{2}-50\right)y=x^{2}+x-20
Combine all terms containing y.
\frac{\left(2x^{2}-50\right)y}{2x^{2}-50}=\frac{\left(x-4\right)\left(x+5\right)}{2x^{2}-50}
Divide both sides by -50+2x^{2}.
y=\frac{\left(x-4\right)\left(x+5\right)}{2x^{2}-50}
Dividing by -50+2x^{2} undoes the multiplication by -50+2x^{2}.
y=\frac{x-4}{2\left(x-5\right)}
Divide \left(-4+x\right)\left(5+x\right) by -50+2x^{2}.
\left(x-5\right)\left(x+6\right)+2\times 5=1y\times 2\left(x-5\right)\left(x+5\right)
Multiply both sides of the equation by 2\left(x-5\right)\left(x+5\right), the least common multiple of 2x+10,x^{2}-25.
x^{2}+x-30+2\times 5=1y\times 2\left(x-5\right)\left(x+5\right)
Use the distributive property to multiply x-5 by x+6 and combine like terms.
x^{2}+x-30+10=1y\times 2\left(x-5\right)\left(x+5\right)
Multiply 2 and 5 to get 10.
x^{2}+x-20=1y\times 2\left(x-5\right)\left(x+5\right)
Add -30 and 10 to get -20.
x^{2}+x-20=2y\left(x-5\right)\left(x+5\right)
Multiply 1 and 2 to get 2.
x^{2}+x-20=\left(2yx-10y\right)\left(x+5\right)
Use the distributive property to multiply 2y by x-5.
x^{2}+x-20=2yx^{2}-50y
Use the distributive property to multiply 2yx-10y by x+5 and combine like terms.
2yx^{2}-50y=x^{2}+x-20
Swap sides so that all variable terms are on the left hand side.
\left(2x^{2}-50\right)y=x^{2}+x-20
Combine all terms containing y.
\frac{\left(2x^{2}-50\right)y}{2x^{2}-50}=\frac{\left(x-4\right)\left(x+5\right)}{2x^{2}-50}
Divide both sides by -50+2x^{2}.
y=\frac{\left(x-4\right)\left(x+5\right)}{2x^{2}-50}
Dividing by -50+2x^{2} undoes the multiplication by -50+2x^{2}.
y=\frac{x-4}{2\left(x-5\right)}
Divide \left(-4+x\right)\left(5+x\right) by -50+2x^{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}