Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{x+5}{\left(x-4\right)\left(x-3\right)}+\frac{3x-1}{\left(x-3\right)\left(x+1\right)}
Factor x^{2}-7x+12. Factor x^{2}-2x-3.
\frac{\left(x+5\right)\left(x+1\right)}{\left(x-4\right)\left(x-3\right)\left(x+1\right)}+\frac{\left(3x-1\right)\left(x-4\right)}{\left(x-4\right)\left(x-3\right)\left(x+1\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(x-4\right)\left(x-3\right) and \left(x-3\right)\left(x+1\right) is \left(x-4\right)\left(x-3\right)\left(x+1\right). Multiply \frac{x+5}{\left(x-4\right)\left(x-3\right)} times \frac{x+1}{x+1}. Multiply \frac{3x-1}{\left(x-3\right)\left(x+1\right)} times \frac{x-4}{x-4}.
\frac{\left(x+5\right)\left(x+1\right)+\left(3x-1\right)\left(x-4\right)}{\left(x-4\right)\left(x-3\right)\left(x+1\right)}
Since \frac{\left(x+5\right)\left(x+1\right)}{\left(x-4\right)\left(x-3\right)\left(x+1\right)} and \frac{\left(3x-1\right)\left(x-4\right)}{\left(x-4\right)\left(x-3\right)\left(x+1\right)} have the same denominator, add them by adding their numerators.
\frac{x^{2}+x+5x+5+3x^{2}-12x-x+4}{\left(x-4\right)\left(x-3\right)\left(x+1\right)}
Do the multiplications in \left(x+5\right)\left(x+1\right)+\left(3x-1\right)\left(x-4\right).
\frac{4x^{2}-7x+9}{\left(x-4\right)\left(x-3\right)\left(x+1\right)}
Combine like terms in x^{2}+x+5x+5+3x^{2}-12x-x+4.
\frac{4x^{2}-7x+9}{x^{3}-6x^{2}+5x+12}
Expand \left(x-4\right)\left(x-3\right)\left(x+1\right).
\frac{x+5}{\left(x-4\right)\left(x-3\right)}+\frac{3x-1}{\left(x-3\right)\left(x+1\right)}
Factor x^{2}-7x+12. Factor x^{2}-2x-3.
\frac{\left(x+5\right)\left(x+1\right)}{\left(x-4\right)\left(x-3\right)\left(x+1\right)}+\frac{\left(3x-1\right)\left(x-4\right)}{\left(x-4\right)\left(x-3\right)\left(x+1\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(x-4\right)\left(x-3\right) and \left(x-3\right)\left(x+1\right) is \left(x-4\right)\left(x-3\right)\left(x+1\right). Multiply \frac{x+5}{\left(x-4\right)\left(x-3\right)} times \frac{x+1}{x+1}. Multiply \frac{3x-1}{\left(x-3\right)\left(x+1\right)} times \frac{x-4}{x-4}.
\frac{\left(x+5\right)\left(x+1\right)+\left(3x-1\right)\left(x-4\right)}{\left(x-4\right)\left(x-3\right)\left(x+1\right)}
Since \frac{\left(x+5\right)\left(x+1\right)}{\left(x-4\right)\left(x-3\right)\left(x+1\right)} and \frac{\left(3x-1\right)\left(x-4\right)}{\left(x-4\right)\left(x-3\right)\left(x+1\right)} have the same denominator, add them by adding their numerators.
\frac{x^{2}+x+5x+5+3x^{2}-12x-x+4}{\left(x-4\right)\left(x-3\right)\left(x+1\right)}
Do the multiplications in \left(x+5\right)\left(x+1\right)+\left(3x-1\right)\left(x-4\right).
\frac{4x^{2}-7x+9}{\left(x-4\right)\left(x-3\right)\left(x+1\right)}
Combine like terms in x^{2}+x+5x+5+3x^{2}-12x-x+4.
\frac{4x^{2}-7x+9}{x^{3}-6x^{2}+5x+12}
Expand \left(x-4\right)\left(x-3\right)\left(x+1\right).