Solve for x
x = \frac{71}{3} = 23\frac{2}{3} \approx 23.666666667
Graph
Share
Copied to clipboard
5\left(x+5\right)=10+8\left(x-7\right)
Multiply both sides of the equation by 40, the least common multiple of 8,4,5.
5x+25=10+8\left(x-7\right)
Use the distributive property to multiply 5 by x+5.
5x+25=10+8x-56
Use the distributive property to multiply 8 by x-7.
5x+25=-46+8x
Subtract 56 from 10 to get -46.
5x+25-8x=-46
Subtract 8x from both sides.
-3x+25=-46
Combine 5x and -8x to get -3x.
-3x=-46-25
Subtract 25 from both sides.
-3x=-71
Subtract 25 from -46 to get -71.
x=\frac{-71}{-3}
Divide both sides by -3.
x=\frac{71}{3}
Fraction \frac{-71}{-3} can be simplified to \frac{71}{3} by removing the negative sign from both the numerator and the denominator.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}