Solve for x
x<\frac{390}{59}
Graph
Share
Copied to clipboard
15\left(x+5\right)+21\left(10-3x\right)>35\left(2x+7\right)-740
Multiply both sides of the equation by 105, the least common multiple of 7,5,3,21. Since 105 is positive, the inequality direction remains the same.
15x+75+21\left(10-3x\right)>35\left(2x+7\right)-740
Use the distributive property to multiply 15 by x+5.
15x+75+210-63x>35\left(2x+7\right)-740
Use the distributive property to multiply 21 by 10-3x.
15x+285-63x>35\left(2x+7\right)-740
Add 75 and 210 to get 285.
-48x+285>35\left(2x+7\right)-740
Combine 15x and -63x to get -48x.
-48x+285>70x+245-740
Use the distributive property to multiply 35 by 2x+7.
-48x+285>70x-495
Subtract 740 from 245 to get -495.
-48x+285-70x>-495
Subtract 70x from both sides.
-118x+285>-495
Combine -48x and -70x to get -118x.
-118x>-495-285
Subtract 285 from both sides.
-118x>-780
Subtract 285 from -495 to get -780.
x<\frac{-780}{-118}
Divide both sides by -118. Since -118 is negative, the inequality direction is changed.
x<\frac{390}{59}
Reduce the fraction \frac{-780}{-118} to lowest terms by extracting and canceling out -2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}