Evaluate
\frac{5x+14}{4\left(x+2\right)}
Expand
\frac{5x+14}{4\left(x+2\right)}
Graph
Share
Copied to clipboard
\frac{x+5}{2\left(x-1\right)}-\frac{2x+7}{\left(x-1\right)\left(x+2\right)}+\frac{3}{4}
Factor 2x-2. Factor x^{2}+x-2.
\frac{\left(x+5\right)\left(x+2\right)}{2\left(x-1\right)\left(x+2\right)}-\frac{2\left(2x+7\right)}{2\left(x-1\right)\left(x+2\right)}+\frac{3}{4}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 2\left(x-1\right) and \left(x-1\right)\left(x+2\right) is 2\left(x-1\right)\left(x+2\right). Multiply \frac{x+5}{2\left(x-1\right)} times \frac{x+2}{x+2}. Multiply \frac{2x+7}{\left(x-1\right)\left(x+2\right)} times \frac{2}{2}.
\frac{\left(x+5\right)\left(x+2\right)-2\left(2x+7\right)}{2\left(x-1\right)\left(x+2\right)}+\frac{3}{4}
Since \frac{\left(x+5\right)\left(x+2\right)}{2\left(x-1\right)\left(x+2\right)} and \frac{2\left(2x+7\right)}{2\left(x-1\right)\left(x+2\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{x^{2}+2x+5x+10-4x-14}{2\left(x-1\right)\left(x+2\right)}+\frac{3}{4}
Do the multiplications in \left(x+5\right)\left(x+2\right)-2\left(2x+7\right).
\frac{x^{2}+3x-4}{2\left(x-1\right)\left(x+2\right)}+\frac{3}{4}
Combine like terms in x^{2}+2x+5x+10-4x-14.
\frac{\left(x-1\right)\left(x+4\right)}{2\left(x-1\right)\left(x+2\right)}+\frac{3}{4}
Factor the expressions that are not already factored in \frac{x^{2}+3x-4}{2\left(x-1\right)\left(x+2\right)}.
\frac{x+4}{2\left(x+2\right)}+\frac{3}{4}
Cancel out x-1 in both numerator and denominator.
\frac{2\left(x+4\right)}{4\left(x+2\right)}+\frac{3\left(x+2\right)}{4\left(x+2\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 2\left(x+2\right) and 4 is 4\left(x+2\right). Multiply \frac{x+4}{2\left(x+2\right)} times \frac{2}{2}. Multiply \frac{3}{4} times \frac{x+2}{x+2}.
\frac{2\left(x+4\right)+3\left(x+2\right)}{4\left(x+2\right)}
Since \frac{2\left(x+4\right)}{4\left(x+2\right)} and \frac{3\left(x+2\right)}{4\left(x+2\right)} have the same denominator, add them by adding their numerators.
\frac{2x+8+3x+6}{4\left(x+2\right)}
Do the multiplications in 2\left(x+4\right)+3\left(x+2\right).
\frac{5x+14}{4\left(x+2\right)}
Combine like terms in 2x+8+3x+6.
\frac{5x+14}{4x+8}
Expand 4\left(x+2\right).
\frac{x+5}{2\left(x-1\right)}-\frac{2x+7}{\left(x-1\right)\left(x+2\right)}+\frac{3}{4}
Factor 2x-2. Factor x^{2}+x-2.
\frac{\left(x+5\right)\left(x+2\right)}{2\left(x-1\right)\left(x+2\right)}-\frac{2\left(2x+7\right)}{2\left(x-1\right)\left(x+2\right)}+\frac{3}{4}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 2\left(x-1\right) and \left(x-1\right)\left(x+2\right) is 2\left(x-1\right)\left(x+2\right). Multiply \frac{x+5}{2\left(x-1\right)} times \frac{x+2}{x+2}. Multiply \frac{2x+7}{\left(x-1\right)\left(x+2\right)} times \frac{2}{2}.
\frac{\left(x+5\right)\left(x+2\right)-2\left(2x+7\right)}{2\left(x-1\right)\left(x+2\right)}+\frac{3}{4}
Since \frac{\left(x+5\right)\left(x+2\right)}{2\left(x-1\right)\left(x+2\right)} and \frac{2\left(2x+7\right)}{2\left(x-1\right)\left(x+2\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{x^{2}+2x+5x+10-4x-14}{2\left(x-1\right)\left(x+2\right)}+\frac{3}{4}
Do the multiplications in \left(x+5\right)\left(x+2\right)-2\left(2x+7\right).
\frac{x^{2}+3x-4}{2\left(x-1\right)\left(x+2\right)}+\frac{3}{4}
Combine like terms in x^{2}+2x+5x+10-4x-14.
\frac{\left(x-1\right)\left(x+4\right)}{2\left(x-1\right)\left(x+2\right)}+\frac{3}{4}
Factor the expressions that are not already factored in \frac{x^{2}+3x-4}{2\left(x-1\right)\left(x+2\right)}.
\frac{x+4}{2\left(x+2\right)}+\frac{3}{4}
Cancel out x-1 in both numerator and denominator.
\frac{2\left(x+4\right)}{4\left(x+2\right)}+\frac{3\left(x+2\right)}{4\left(x+2\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 2\left(x+2\right) and 4 is 4\left(x+2\right). Multiply \frac{x+4}{2\left(x+2\right)} times \frac{2}{2}. Multiply \frac{3}{4} times \frac{x+2}{x+2}.
\frac{2\left(x+4\right)+3\left(x+2\right)}{4\left(x+2\right)}
Since \frac{2\left(x+4\right)}{4\left(x+2\right)} and \frac{3\left(x+2\right)}{4\left(x+2\right)} have the same denominator, add them by adding their numerators.
\frac{2x+8+3x+6}{4\left(x+2\right)}
Do the multiplications in 2\left(x+4\right)+3\left(x+2\right).
\frac{5x+14}{4\left(x+2\right)}
Combine like terms in 2x+8+3x+6.
\frac{5x+14}{4x+8}
Expand 4\left(x+2\right).
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}