Solve for x
x = -\frac{7}{4} = -1\frac{3}{4} = -1.75
Graph
Share
Copied to clipboard
\left(x-2\right)\left(x+4\right)=\left(x-5\right)\left(x+3\right)
Variable x cannot be equal to any of the values 2,5 since division by zero is not defined. Multiply both sides of the equation by \left(x-5\right)\left(x-2\right), the least common multiple of x-5,x-2.
x^{2}+2x-8=\left(x-5\right)\left(x+3\right)
Use the distributive property to multiply x-2 by x+4 and combine like terms.
x^{2}+2x-8=x^{2}-2x-15
Use the distributive property to multiply x-5 by x+3 and combine like terms.
x^{2}+2x-8-x^{2}=-2x-15
Subtract x^{2} from both sides.
2x-8=-2x-15
Combine x^{2} and -x^{2} to get 0.
2x-8+2x=-15
Add 2x to both sides.
4x-8=-15
Combine 2x and 2x to get 4x.
4x=-15+8
Add 8 to both sides.
4x=-7
Add -15 and 8 to get -7.
x=\frac{-7}{4}
Divide both sides by 4.
x=-\frac{7}{4}
Fraction \frac{-7}{4} can be rewritten as -\frac{7}{4} by extracting the negative sign.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}