Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{x+4}{\left(x-2\right)\left(x^{2}+2x+4\right)}+\frac{1}{x\left(-x+2\right)}
Factor x^{3}-8. Factor 2x-x^{2}.
\frac{\left(x+4\right)x}{x\left(x-2\right)\left(x^{2}+2x+4\right)}+\frac{-\left(x^{2}+2x+4\right)}{x\left(x-2\right)\left(x^{2}+2x+4\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(x-2\right)\left(x^{2}+2x+4\right) and x\left(-x+2\right) is x\left(x-2\right)\left(x^{2}+2x+4\right). Multiply \frac{x+4}{\left(x-2\right)\left(x^{2}+2x+4\right)} times \frac{x}{x}. Multiply \frac{1}{x\left(-x+2\right)} times \frac{-\left(x^{2}+2x+4\right)}{-\left(x^{2}+2x+4\right)}.
\frac{\left(x+4\right)x-\left(x^{2}+2x+4\right)}{x\left(x-2\right)\left(x^{2}+2x+4\right)}
Since \frac{\left(x+4\right)x}{x\left(x-2\right)\left(x^{2}+2x+4\right)} and \frac{-\left(x^{2}+2x+4\right)}{x\left(x-2\right)\left(x^{2}+2x+4\right)} have the same denominator, add them by adding their numerators.
\frac{x^{2}+4x-x^{2}-2x-4}{x\left(x-2\right)\left(x^{2}+2x+4\right)}
Do the multiplications in \left(x+4\right)x-\left(x^{2}+2x+4\right).
\frac{2x-4}{x\left(x-2\right)\left(x^{2}+2x+4\right)}
Combine like terms in x^{2}+4x-x^{2}-2x-4.
\frac{2\left(x-2\right)}{x\left(x-2\right)\left(x^{2}+2x+4\right)}
Factor the expressions that are not already factored in \frac{2x-4}{x\left(x-2\right)\left(x^{2}+2x+4\right)}.
\frac{2}{x\left(x^{2}+2x+4\right)}
Cancel out x-2 in both numerator and denominator.
\frac{2}{x^{3}+2x^{2}+4x}
Expand x\left(x^{2}+2x+4\right).
\frac{x+4}{\left(x-2\right)\left(x^{2}+2x+4\right)}+\frac{1}{x\left(-x+2\right)}
Factor x^{3}-8. Factor 2x-x^{2}.
\frac{\left(x+4\right)x}{x\left(x-2\right)\left(x^{2}+2x+4\right)}+\frac{-\left(x^{2}+2x+4\right)}{x\left(x-2\right)\left(x^{2}+2x+4\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(x-2\right)\left(x^{2}+2x+4\right) and x\left(-x+2\right) is x\left(x-2\right)\left(x^{2}+2x+4\right). Multiply \frac{x+4}{\left(x-2\right)\left(x^{2}+2x+4\right)} times \frac{x}{x}. Multiply \frac{1}{x\left(-x+2\right)} times \frac{-\left(x^{2}+2x+4\right)}{-\left(x^{2}+2x+4\right)}.
\frac{\left(x+4\right)x-\left(x^{2}+2x+4\right)}{x\left(x-2\right)\left(x^{2}+2x+4\right)}
Since \frac{\left(x+4\right)x}{x\left(x-2\right)\left(x^{2}+2x+4\right)} and \frac{-\left(x^{2}+2x+4\right)}{x\left(x-2\right)\left(x^{2}+2x+4\right)} have the same denominator, add them by adding their numerators.
\frac{x^{2}+4x-x^{2}-2x-4}{x\left(x-2\right)\left(x^{2}+2x+4\right)}
Do the multiplications in \left(x+4\right)x-\left(x^{2}+2x+4\right).
\frac{2x-4}{x\left(x-2\right)\left(x^{2}+2x+4\right)}
Combine like terms in x^{2}+4x-x^{2}-2x-4.
\frac{2\left(x-2\right)}{x\left(x-2\right)\left(x^{2}+2x+4\right)}
Factor the expressions that are not already factored in \frac{2x-4}{x\left(x-2\right)\left(x^{2}+2x+4\right)}.
\frac{2}{x\left(x^{2}+2x+4\right)}
Cancel out x-2 in both numerator and denominator.
\frac{2}{x^{3}+2x^{2}+4x}
Expand x\left(x^{2}+2x+4\right).