Evaluate
\frac{2}{x\left(x^{2}+2x+4\right)}
Expand
\frac{2}{x\left(x^{2}+2x+4\right)}
Graph
Share
Copied to clipboard
\frac{x+4}{\left(x-2\right)\left(x^{2}+2x+4\right)}+\frac{1}{x\left(-x+2\right)}
Factor x^{3}-8. Factor 2x-x^{2}.
\frac{\left(x+4\right)x}{x\left(x-2\right)\left(x^{2}+2x+4\right)}+\frac{-\left(x^{2}+2x+4\right)}{x\left(x-2\right)\left(x^{2}+2x+4\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(x-2\right)\left(x^{2}+2x+4\right) and x\left(-x+2\right) is x\left(x-2\right)\left(x^{2}+2x+4\right). Multiply \frac{x+4}{\left(x-2\right)\left(x^{2}+2x+4\right)} times \frac{x}{x}. Multiply \frac{1}{x\left(-x+2\right)} times \frac{-\left(x^{2}+2x+4\right)}{-\left(x^{2}+2x+4\right)}.
\frac{\left(x+4\right)x-\left(x^{2}+2x+4\right)}{x\left(x-2\right)\left(x^{2}+2x+4\right)}
Since \frac{\left(x+4\right)x}{x\left(x-2\right)\left(x^{2}+2x+4\right)} and \frac{-\left(x^{2}+2x+4\right)}{x\left(x-2\right)\left(x^{2}+2x+4\right)} have the same denominator, add them by adding their numerators.
\frac{x^{2}+4x-x^{2}-2x-4}{x\left(x-2\right)\left(x^{2}+2x+4\right)}
Do the multiplications in \left(x+4\right)x-\left(x^{2}+2x+4\right).
\frac{2x-4}{x\left(x-2\right)\left(x^{2}+2x+4\right)}
Combine like terms in x^{2}+4x-x^{2}-2x-4.
\frac{2\left(x-2\right)}{x\left(x-2\right)\left(x^{2}+2x+4\right)}
Factor the expressions that are not already factored in \frac{2x-4}{x\left(x-2\right)\left(x^{2}+2x+4\right)}.
\frac{2}{x\left(x^{2}+2x+4\right)}
Cancel out x-2 in both numerator and denominator.
\frac{2}{x^{3}+2x^{2}+4x}
Expand x\left(x^{2}+2x+4\right).
\frac{x+4}{\left(x-2\right)\left(x^{2}+2x+4\right)}+\frac{1}{x\left(-x+2\right)}
Factor x^{3}-8. Factor 2x-x^{2}.
\frac{\left(x+4\right)x}{x\left(x-2\right)\left(x^{2}+2x+4\right)}+\frac{-\left(x^{2}+2x+4\right)}{x\left(x-2\right)\left(x^{2}+2x+4\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(x-2\right)\left(x^{2}+2x+4\right) and x\left(-x+2\right) is x\left(x-2\right)\left(x^{2}+2x+4\right). Multiply \frac{x+4}{\left(x-2\right)\left(x^{2}+2x+4\right)} times \frac{x}{x}. Multiply \frac{1}{x\left(-x+2\right)} times \frac{-\left(x^{2}+2x+4\right)}{-\left(x^{2}+2x+4\right)}.
\frac{\left(x+4\right)x-\left(x^{2}+2x+4\right)}{x\left(x-2\right)\left(x^{2}+2x+4\right)}
Since \frac{\left(x+4\right)x}{x\left(x-2\right)\left(x^{2}+2x+4\right)} and \frac{-\left(x^{2}+2x+4\right)}{x\left(x-2\right)\left(x^{2}+2x+4\right)} have the same denominator, add them by adding their numerators.
\frac{x^{2}+4x-x^{2}-2x-4}{x\left(x-2\right)\left(x^{2}+2x+4\right)}
Do the multiplications in \left(x+4\right)x-\left(x^{2}+2x+4\right).
\frac{2x-4}{x\left(x-2\right)\left(x^{2}+2x+4\right)}
Combine like terms in x^{2}+4x-x^{2}-2x-4.
\frac{2\left(x-2\right)}{x\left(x-2\right)\left(x^{2}+2x+4\right)}
Factor the expressions that are not already factored in \frac{2x-4}{x\left(x-2\right)\left(x^{2}+2x+4\right)}.
\frac{2}{x\left(x^{2}+2x+4\right)}
Cancel out x-2 in both numerator and denominator.
\frac{2}{x^{3}+2x^{2}+4x}
Expand x\left(x^{2}+2x+4\right).
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}