Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{\left(x+4\right)\left(x+1\right)}{\left(x+1\right)\left(x+2\right)}-\frac{\left(x+5\right)\left(x+2\right)}{\left(x+1\right)\left(x+2\right)}-\frac{x-5}{x-1}+\frac{x-4}{x-2}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x+2 and x+1 is \left(x+1\right)\left(x+2\right). Multiply \frac{x+4}{x+2} times \frac{x+1}{x+1}. Multiply \frac{x+5}{x+1} times \frac{x+2}{x+2}.
\frac{\left(x+4\right)\left(x+1\right)-\left(x+5\right)\left(x+2\right)}{\left(x+1\right)\left(x+2\right)}-\frac{x-5}{x-1}+\frac{x-4}{x-2}
Since \frac{\left(x+4\right)\left(x+1\right)}{\left(x+1\right)\left(x+2\right)} and \frac{\left(x+5\right)\left(x+2\right)}{\left(x+1\right)\left(x+2\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{x^{2}+x+4x+4-x^{2}-2x-5x-10}{\left(x+1\right)\left(x+2\right)}-\frac{x-5}{x-1}+\frac{x-4}{x-2}
Do the multiplications in \left(x+4\right)\left(x+1\right)-\left(x+5\right)\left(x+2\right).
\frac{-2x-6}{\left(x+1\right)\left(x+2\right)}-\frac{x-5}{x-1}+\frac{x-4}{x-2}
Combine like terms in x^{2}+x+4x+4-x^{2}-2x-5x-10.
\frac{\left(-2x-6\right)\left(x-1\right)}{\left(x-1\right)\left(x+1\right)\left(x+2\right)}-\frac{\left(x-5\right)\left(x+1\right)\left(x+2\right)}{\left(x-1\right)\left(x+1\right)\left(x+2\right)}+\frac{x-4}{x-2}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(x+1\right)\left(x+2\right) and x-1 is \left(x-1\right)\left(x+1\right)\left(x+2\right). Multiply \frac{-2x-6}{\left(x+1\right)\left(x+2\right)} times \frac{x-1}{x-1}. Multiply \frac{x-5}{x-1} times \frac{\left(x+1\right)\left(x+2\right)}{\left(x+1\right)\left(x+2\right)}.
\frac{\left(-2x-6\right)\left(x-1\right)-\left(x-5\right)\left(x+1\right)\left(x+2\right)}{\left(x-1\right)\left(x+1\right)\left(x+2\right)}+\frac{x-4}{x-2}
Since \frac{\left(-2x-6\right)\left(x-1\right)}{\left(x-1\right)\left(x+1\right)\left(x+2\right)} and \frac{\left(x-5\right)\left(x+1\right)\left(x+2\right)}{\left(x-1\right)\left(x+1\right)\left(x+2\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{-2x^{2}+2x-6x+6-x^{3}-3x^{2}-2x+5x^{2}+15x+10}{\left(x-1\right)\left(x+1\right)\left(x+2\right)}+\frac{x-4}{x-2}
Do the multiplications in \left(-2x-6\right)\left(x-1\right)-\left(x-5\right)\left(x+1\right)\left(x+2\right).
\frac{9x+16-x^{3}}{\left(x-1\right)\left(x+1\right)\left(x+2\right)}+\frac{x-4}{x-2}
Combine like terms in -2x^{2}+2x-6x+6-x^{3}-3x^{2}-2x+5x^{2}+15x+10.
\frac{\left(9x+16-x^{3}\right)\left(x-2\right)}{\left(x-2\right)\left(x-1\right)\left(x+1\right)\left(x+2\right)}+\frac{\left(x-4\right)\left(x-1\right)\left(x+1\right)\left(x+2\right)}{\left(x-2\right)\left(x-1\right)\left(x+1\right)\left(x+2\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(x-1\right)\left(x+1\right)\left(x+2\right) and x-2 is \left(x-2\right)\left(x-1\right)\left(x+1\right)\left(x+2\right). Multiply \frac{9x+16-x^{3}}{\left(x-1\right)\left(x+1\right)\left(x+2\right)} times \frac{x-2}{x-2}. Multiply \frac{x-4}{x-2} times \frac{\left(x-1\right)\left(x+1\right)\left(x+2\right)}{\left(x-1\right)\left(x+1\right)\left(x+2\right)}.
\frac{\left(9x+16-x^{3}\right)\left(x-2\right)+\left(x-4\right)\left(x-1\right)\left(x+1\right)\left(x+2\right)}{\left(x-2\right)\left(x-1\right)\left(x+1\right)\left(x+2\right)}
Since \frac{\left(9x+16-x^{3}\right)\left(x-2\right)}{\left(x-2\right)\left(x-1\right)\left(x+1\right)\left(x+2\right)} and \frac{\left(x-4\right)\left(x-1\right)\left(x+1\right)\left(x+2\right)}{\left(x-2\right)\left(x-1\right)\left(x+1\right)\left(x+2\right)} have the same denominator, add them by adding their numerators.
\frac{9x^{2}-18x+16x-32-x^{4}+2x^{3}+x^{4}+2x^{3}-x^{2}-2x-4x^{3}-8x^{2}+4x+8}{\left(x-2\right)\left(x-1\right)\left(x+1\right)\left(x+2\right)}
Do the multiplications in \left(9x+16-x^{3}\right)\left(x-2\right)+\left(x-4\right)\left(x-1\right)\left(x+1\right)\left(x+2\right).
\frac{-24}{\left(x-2\right)\left(x-1\right)\left(x+1\right)\left(x+2\right)}
Combine like terms in 9x^{2}-18x+16x-32-x^{4}+2x^{3}+x^{4}+2x^{3}-x^{2}-2x-4x^{3}-8x^{2}+4x+8.
\frac{-24}{x^{4}-5x^{2}+4}
Expand \left(x-2\right)\left(x-1\right)\left(x+1\right)\left(x+2\right).
\frac{\left(x+4\right)\left(x+1\right)}{\left(x+1\right)\left(x+2\right)}-\frac{\left(x+5\right)\left(x+2\right)}{\left(x+1\right)\left(x+2\right)}-\frac{x-5}{x-1}+\frac{x-4}{x-2}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x+2 and x+1 is \left(x+1\right)\left(x+2\right). Multiply \frac{x+4}{x+2} times \frac{x+1}{x+1}. Multiply \frac{x+5}{x+1} times \frac{x+2}{x+2}.
\frac{\left(x+4\right)\left(x+1\right)-\left(x+5\right)\left(x+2\right)}{\left(x+1\right)\left(x+2\right)}-\frac{x-5}{x-1}+\frac{x-4}{x-2}
Since \frac{\left(x+4\right)\left(x+1\right)}{\left(x+1\right)\left(x+2\right)} and \frac{\left(x+5\right)\left(x+2\right)}{\left(x+1\right)\left(x+2\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{x^{2}+x+4x+4-x^{2}-2x-5x-10}{\left(x+1\right)\left(x+2\right)}-\frac{x-5}{x-1}+\frac{x-4}{x-2}
Do the multiplications in \left(x+4\right)\left(x+1\right)-\left(x+5\right)\left(x+2\right).
\frac{-2x-6}{\left(x+1\right)\left(x+2\right)}-\frac{x-5}{x-1}+\frac{x-4}{x-2}
Combine like terms in x^{2}+x+4x+4-x^{2}-2x-5x-10.
\frac{\left(-2x-6\right)\left(x-1\right)}{\left(x-1\right)\left(x+1\right)\left(x+2\right)}-\frac{\left(x-5\right)\left(x+1\right)\left(x+2\right)}{\left(x-1\right)\left(x+1\right)\left(x+2\right)}+\frac{x-4}{x-2}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(x+1\right)\left(x+2\right) and x-1 is \left(x-1\right)\left(x+1\right)\left(x+2\right). Multiply \frac{-2x-6}{\left(x+1\right)\left(x+2\right)} times \frac{x-1}{x-1}. Multiply \frac{x-5}{x-1} times \frac{\left(x+1\right)\left(x+2\right)}{\left(x+1\right)\left(x+2\right)}.
\frac{\left(-2x-6\right)\left(x-1\right)-\left(x-5\right)\left(x+1\right)\left(x+2\right)}{\left(x-1\right)\left(x+1\right)\left(x+2\right)}+\frac{x-4}{x-2}
Since \frac{\left(-2x-6\right)\left(x-1\right)}{\left(x-1\right)\left(x+1\right)\left(x+2\right)} and \frac{\left(x-5\right)\left(x+1\right)\left(x+2\right)}{\left(x-1\right)\left(x+1\right)\left(x+2\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{-2x^{2}+2x-6x+6-x^{3}-3x^{2}-2x+5x^{2}+15x+10}{\left(x-1\right)\left(x+1\right)\left(x+2\right)}+\frac{x-4}{x-2}
Do the multiplications in \left(-2x-6\right)\left(x-1\right)-\left(x-5\right)\left(x+1\right)\left(x+2\right).
\frac{9x+16-x^{3}}{\left(x-1\right)\left(x+1\right)\left(x+2\right)}+\frac{x-4}{x-2}
Combine like terms in -2x^{2}+2x-6x+6-x^{3}-3x^{2}-2x+5x^{2}+15x+10.
\frac{\left(9x+16-x^{3}\right)\left(x-2\right)}{\left(x-2\right)\left(x-1\right)\left(x+1\right)\left(x+2\right)}+\frac{\left(x-4\right)\left(x-1\right)\left(x+1\right)\left(x+2\right)}{\left(x-2\right)\left(x-1\right)\left(x+1\right)\left(x+2\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(x-1\right)\left(x+1\right)\left(x+2\right) and x-2 is \left(x-2\right)\left(x-1\right)\left(x+1\right)\left(x+2\right). Multiply \frac{9x+16-x^{3}}{\left(x-1\right)\left(x+1\right)\left(x+2\right)} times \frac{x-2}{x-2}. Multiply \frac{x-4}{x-2} times \frac{\left(x-1\right)\left(x+1\right)\left(x+2\right)}{\left(x-1\right)\left(x+1\right)\left(x+2\right)}.
\frac{\left(9x+16-x^{3}\right)\left(x-2\right)+\left(x-4\right)\left(x-1\right)\left(x+1\right)\left(x+2\right)}{\left(x-2\right)\left(x-1\right)\left(x+1\right)\left(x+2\right)}
Since \frac{\left(9x+16-x^{3}\right)\left(x-2\right)}{\left(x-2\right)\left(x-1\right)\left(x+1\right)\left(x+2\right)} and \frac{\left(x-4\right)\left(x-1\right)\left(x+1\right)\left(x+2\right)}{\left(x-2\right)\left(x-1\right)\left(x+1\right)\left(x+2\right)} have the same denominator, add them by adding their numerators.
\frac{9x^{2}-18x+16x-32-x^{4}+2x^{3}+x^{4}+2x^{3}-x^{2}-2x-4x^{3}-8x^{2}+4x+8}{\left(x-2\right)\left(x-1\right)\left(x+1\right)\left(x+2\right)}
Do the multiplications in \left(9x+16-x^{3}\right)\left(x-2\right)+\left(x-4\right)\left(x-1\right)\left(x+1\right)\left(x+2\right).
\frac{-24}{\left(x-2\right)\left(x-1\right)\left(x+1\right)\left(x+2\right)}
Combine like terms in 9x^{2}-18x+16x-32-x^{4}+2x^{3}+x^{4}+2x^{3}-x^{2}-2x-4x^{3}-8x^{2}+4x+8.
\frac{-24}{x^{4}-5x^{2}+4}
Expand \left(x-2\right)\left(x-1\right)\left(x+1\right)\left(x+2\right).