Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

x+12>0 x+12<0
Denominator x+12 cannot be zero since division by zero is not defined. There are two cases.
x>-12
Consider the case when x+12 is positive. Move 12 to the right hand side.
x+4>10\left(x+12\right)
The initial inequality does not change the direction when multiplied by x+12 for x+12>0.
x+4>10x+120
Multiply out the right hand side.
x-10x>-4+120
Move the terms containing x to the left hand side and all other terms to the right hand side.
-9x>116
Combine like terms.
x<-\frac{116}{9}
Divide both sides by -9. Since -9 is negative, the inequality direction is changed.
x\in \emptyset
Consider condition x>-12 specified above.
x<-12
Now consider the case when x+12 is negative. Move 12 to the right hand side.
x+4<10\left(x+12\right)
The initial inequality changes the direction when multiplied by x+12 for x+12<0.
x+4<10x+120
Multiply out the right hand side.
x-10x<-4+120
Move the terms containing x to the left hand side and all other terms to the right hand side.
-9x<116
Combine like terms.
x>-\frac{116}{9}
Divide both sides by -9. Since -9 is negative, the inequality direction is changed.
x\in \left(-\frac{116}{9},-12\right)
Consider condition x<-12 specified above.
x\in \left(-\frac{116}{9},-12\right)
The final solution is the union of the obtained solutions.