Solve for x
x=\frac{3}{4}=0.75
Graph
Share
Copied to clipboard
\left(3x-2\right)\left(x+4\right)-\left(x+1\right)=\left(3x-2\right)\left(x-3\right)
Variable x cannot be equal to any of the values -1,\frac{2}{3} since division by zero is not defined. Multiply both sides of the equation by \left(3x-2\right)\left(x+1\right), the least common multiple of x+1,3x-2.
3x^{2}+10x-8-\left(x+1\right)=\left(3x-2\right)\left(x-3\right)
Use the distributive property to multiply 3x-2 by x+4 and combine like terms.
3x^{2}+10x-8-x-1=\left(3x-2\right)\left(x-3\right)
To find the opposite of x+1, find the opposite of each term.
3x^{2}+9x-8-1=\left(3x-2\right)\left(x-3\right)
Combine 10x and -x to get 9x.
3x^{2}+9x-9=\left(3x-2\right)\left(x-3\right)
Subtract 1 from -8 to get -9.
3x^{2}+9x-9=3x^{2}-11x+6
Use the distributive property to multiply 3x-2 by x-3 and combine like terms.
3x^{2}+9x-9-3x^{2}=-11x+6
Subtract 3x^{2} from both sides.
9x-9=-11x+6
Combine 3x^{2} and -3x^{2} to get 0.
9x-9+11x=6
Add 11x to both sides.
20x-9=6
Combine 9x and 11x to get 20x.
20x=6+9
Add 9 to both sides.
20x=15
Add 6 and 9 to get 15.
x=\frac{15}{20}
Divide both sides by 20.
x=\frac{3}{4}
Reduce the fraction \frac{15}{20} to lowest terms by extracting and canceling out 5.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}