Solve for x
x=-4
Graph
Share
Copied to clipboard
\left(x-3\right)\left(x+4\right)+\left(-2+x\right)\left(x+1\right)=\left(-2+x\right)\left(2x+5\right)
Variable x cannot be equal to any of the values \frac{1}{2},2,3 since division by zero is not defined. Multiply both sides of the equation by 2\left(x-3\right)\left(\frac{1}{2}x-1\right)\left(2x-1\right), the least common multiple of 2x^{2}-5x+2,2x^{2}-7x+3.
x^{2}+x-12+\left(-2+x\right)\left(x+1\right)=\left(-2+x\right)\left(2x+5\right)
Use the distributive property to multiply x-3 by x+4 and combine like terms.
x^{2}+x-12-x-2+x^{2}=\left(-2+x\right)\left(2x+5\right)
Use the distributive property to multiply -2+x by x+1 and combine like terms.
x^{2}-12-2+x^{2}=\left(-2+x\right)\left(2x+5\right)
Combine x and -x to get 0.
x^{2}-14+x^{2}=\left(-2+x\right)\left(2x+5\right)
Subtract 2 from -12 to get -14.
2x^{2}-14=\left(-2+x\right)\left(2x+5\right)
Combine x^{2} and x^{2} to get 2x^{2}.
2x^{2}-14=x-10+2x^{2}
Use the distributive property to multiply -2+x by 2x+5 and combine like terms.
2x^{2}-14-x=-10+2x^{2}
Subtract x from both sides.
2x^{2}-14-x-2x^{2}=-10
Subtract 2x^{2} from both sides.
-14-x=-10
Combine 2x^{2} and -2x^{2} to get 0.
-x=-10+14
Add 14 to both sides.
-x=4
Add -10 and 14 to get 4.
x=-4
Multiply both sides by -1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}