Solve for x
x>\frac{118}{3}
Graph
Share
Copied to clipboard
-\left(x+34\right)>-2\left(2x-42\right)
Multiply both sides of the equation by 6, the least common multiple of -6,-3. Since 6 is positive, the inequality direction remains the same.
-x-34>-2\left(2x-42\right)
To find the opposite of x+34, find the opposite of each term.
-x-34>-4x+84
Use the distributive property to multiply -2 by 2x-42.
-x-34+4x>84
Add 4x to both sides.
3x-34>84
Combine -x and 4x to get 3x.
3x>84+34
Add 34 to both sides.
3x>118
Add 84 and 34 to get 118.
x>\frac{118}{3}
Divide both sides by 3. Since 3 is positive, the inequality direction remains the same.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}