\frac { x + 3 } { x - 5 } > ( 0,5 )
Solve for x
x\in \left(-\infty;-11\right)\cup \left(5;\infty\right)
Graph
Share
Copied to clipboard
x-5>0 x-5<0
Denominator x-5 cannot be zero since division by zero is not defined. There are two cases.
x>5
Consider the case when x-5 is positive. Move -5 to the right hand side.
x+3>0,5\left(x-5\right)
The initial inequality does not change the direction when multiplied by x-5 for x-5>0.
x+3>0,5x-2,5
Multiply out the right hand side.
x-0,5x>-3-2,5
Move the terms containing x to the left hand side and all other terms to the right hand side.
0,5x>-5,5
Combine like terms.
x>-11
Divide both sides by 0,5. Since 0,5 is positive, the inequality direction remains the same.
x>5
Consider condition x>5 specified above.
x<5
Now consider the case when x-5 is negative. Move -5 to the right hand side.
x+3<0,5\left(x-5\right)
The initial inequality changes the direction when multiplied by x-5 for x-5<0.
x+3<0,5x-2,5
Multiply out the right hand side.
x-0,5x<-3-2,5
Move the terms containing x to the left hand side and all other terms to the right hand side.
0,5x<-5,5
Combine like terms.
x<-11
Divide both sides by 0,5. Since 0,5 is positive, the inequality direction remains the same.
x<-11
Consider condition x<5 specified above. The result remains the same.
x\in \left(-\infty;-11\right)\cup \left(5;\infty\right)
The final solution is the union of the obtained solutions.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}