Solve for x
x = \frac{\sqrt{1057} - 11}{6} \approx 3.585256069
x=\frac{-\sqrt{1057}-11}{6}\approx -7.251922736
Graph
Quiz
Quadratic Equation
5 problems similar to:
\frac { x + 3 } { x - 3 } + \frac { x - 6 } { x + 6 } = 11
Share
Copied to clipboard
\left(x+6\right)\left(x+3\right)+\left(x-3\right)\left(x-6\right)=11\left(x-3\right)\left(x+6\right)
Variable x cannot be equal to any of the values -6,3 since division by zero is not defined. Multiply both sides of the equation by \left(x-3\right)\left(x+6\right), the least common multiple of x-3,x+6.
x^{2}+9x+18+\left(x-3\right)\left(x-6\right)=11\left(x-3\right)\left(x+6\right)
Use the distributive property to multiply x+6 by x+3 and combine like terms.
x^{2}+9x+18+x^{2}-9x+18=11\left(x-3\right)\left(x+6\right)
Use the distributive property to multiply x-3 by x-6 and combine like terms.
2x^{2}+9x+18-9x+18=11\left(x-3\right)\left(x+6\right)
Combine x^{2} and x^{2} to get 2x^{2}.
2x^{2}+18+18=11\left(x-3\right)\left(x+6\right)
Combine 9x and -9x to get 0.
2x^{2}+36=11\left(x-3\right)\left(x+6\right)
Add 18 and 18 to get 36.
2x^{2}+36=\left(11x-33\right)\left(x+6\right)
Use the distributive property to multiply 11 by x-3.
2x^{2}+36=11x^{2}+33x-198
Use the distributive property to multiply 11x-33 by x+6 and combine like terms.
2x^{2}+36-11x^{2}=33x-198
Subtract 11x^{2} from both sides.
-9x^{2}+36=33x-198
Combine 2x^{2} and -11x^{2} to get -9x^{2}.
-9x^{2}+36-33x=-198
Subtract 33x from both sides.
-9x^{2}+36-33x+198=0
Add 198 to both sides.
-9x^{2}+234-33x=0
Add 36 and 198 to get 234.
-9x^{2}-33x+234=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-33\right)±\sqrt{\left(-33\right)^{2}-4\left(-9\right)\times 234}}{2\left(-9\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -9 for a, -33 for b, and 234 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-33\right)±\sqrt{1089-4\left(-9\right)\times 234}}{2\left(-9\right)}
Square -33.
x=\frac{-\left(-33\right)±\sqrt{1089+36\times 234}}{2\left(-9\right)}
Multiply -4 times -9.
x=\frac{-\left(-33\right)±\sqrt{1089+8424}}{2\left(-9\right)}
Multiply 36 times 234.
x=\frac{-\left(-33\right)±\sqrt{9513}}{2\left(-9\right)}
Add 1089 to 8424.
x=\frac{-\left(-33\right)±3\sqrt{1057}}{2\left(-9\right)}
Take the square root of 9513.
x=\frac{33±3\sqrt{1057}}{2\left(-9\right)}
The opposite of -33 is 33.
x=\frac{33±3\sqrt{1057}}{-18}
Multiply 2 times -9.
x=\frac{3\sqrt{1057}+33}{-18}
Now solve the equation x=\frac{33±3\sqrt{1057}}{-18} when ± is plus. Add 33 to 3\sqrt{1057}.
x=\frac{-\sqrt{1057}-11}{6}
Divide 33+3\sqrt{1057} by -18.
x=\frac{33-3\sqrt{1057}}{-18}
Now solve the equation x=\frac{33±3\sqrt{1057}}{-18} when ± is minus. Subtract 3\sqrt{1057} from 33.
x=\frac{\sqrt{1057}-11}{6}
Divide 33-3\sqrt{1057} by -18.
x=\frac{-\sqrt{1057}-11}{6} x=\frac{\sqrt{1057}-11}{6}
The equation is now solved.
\left(x+6\right)\left(x+3\right)+\left(x-3\right)\left(x-6\right)=11\left(x-3\right)\left(x+6\right)
Variable x cannot be equal to any of the values -6,3 since division by zero is not defined. Multiply both sides of the equation by \left(x-3\right)\left(x+6\right), the least common multiple of x-3,x+6.
x^{2}+9x+18+\left(x-3\right)\left(x-6\right)=11\left(x-3\right)\left(x+6\right)
Use the distributive property to multiply x+6 by x+3 and combine like terms.
x^{2}+9x+18+x^{2}-9x+18=11\left(x-3\right)\left(x+6\right)
Use the distributive property to multiply x-3 by x-6 and combine like terms.
2x^{2}+9x+18-9x+18=11\left(x-3\right)\left(x+6\right)
Combine x^{2} and x^{2} to get 2x^{2}.
2x^{2}+18+18=11\left(x-3\right)\left(x+6\right)
Combine 9x and -9x to get 0.
2x^{2}+36=11\left(x-3\right)\left(x+6\right)
Add 18 and 18 to get 36.
2x^{2}+36=\left(11x-33\right)\left(x+6\right)
Use the distributive property to multiply 11 by x-3.
2x^{2}+36=11x^{2}+33x-198
Use the distributive property to multiply 11x-33 by x+6 and combine like terms.
2x^{2}+36-11x^{2}=33x-198
Subtract 11x^{2} from both sides.
-9x^{2}+36=33x-198
Combine 2x^{2} and -11x^{2} to get -9x^{2}.
-9x^{2}+36-33x=-198
Subtract 33x from both sides.
-9x^{2}-33x=-198-36
Subtract 36 from both sides.
-9x^{2}-33x=-234
Subtract 36 from -198 to get -234.
\frac{-9x^{2}-33x}{-9}=-\frac{234}{-9}
Divide both sides by -9.
x^{2}+\left(-\frac{33}{-9}\right)x=-\frac{234}{-9}
Dividing by -9 undoes the multiplication by -9.
x^{2}+\frac{11}{3}x=-\frac{234}{-9}
Reduce the fraction \frac{-33}{-9} to lowest terms by extracting and canceling out 3.
x^{2}+\frac{11}{3}x=26
Divide -234 by -9.
x^{2}+\frac{11}{3}x+\left(\frac{11}{6}\right)^{2}=26+\left(\frac{11}{6}\right)^{2}
Divide \frac{11}{3}, the coefficient of the x term, by 2 to get \frac{11}{6}. Then add the square of \frac{11}{6} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{11}{3}x+\frac{121}{36}=26+\frac{121}{36}
Square \frac{11}{6} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{11}{3}x+\frac{121}{36}=\frac{1057}{36}
Add 26 to \frac{121}{36}.
\left(x+\frac{11}{6}\right)^{2}=\frac{1057}{36}
Factor x^{2}+\frac{11}{3}x+\frac{121}{36}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{11}{6}\right)^{2}}=\sqrt{\frac{1057}{36}}
Take the square root of both sides of the equation.
x+\frac{11}{6}=\frac{\sqrt{1057}}{6} x+\frac{11}{6}=-\frac{\sqrt{1057}}{6}
Simplify.
x=\frac{\sqrt{1057}-11}{6} x=\frac{-\sqrt{1057}-11}{6}
Subtract \frac{11}{6} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}