Solve for x
x=-\frac{2}{9}\approx -0.222222222
x=4
Graph
Share
Copied to clipboard
4x\left(x+3\right)-\left(4x-8\right)\left(1-x\right)=17x\left(x-2\right)
Variable x cannot be equal to any of the values 0,2 since division by zero is not defined. Multiply both sides of the equation by 4x\left(x-2\right), the least common multiple of x-2,x,4.
4x^{2}+12x-\left(4x-8\right)\left(1-x\right)=17x\left(x-2\right)
Use the distributive property to multiply 4x by x+3.
4x^{2}+12x-\left(12x-4x^{2}-8\right)=17x\left(x-2\right)
Use the distributive property to multiply 4x-8 by 1-x and combine like terms.
4x^{2}+12x-12x+4x^{2}+8=17x\left(x-2\right)
To find the opposite of 12x-4x^{2}-8, find the opposite of each term.
4x^{2}+4x^{2}+8=17x\left(x-2\right)
Combine 12x and -12x to get 0.
8x^{2}+8=17x\left(x-2\right)
Combine 4x^{2} and 4x^{2} to get 8x^{2}.
8x^{2}+8=17x^{2}-34x
Use the distributive property to multiply 17x by x-2.
8x^{2}+8-17x^{2}=-34x
Subtract 17x^{2} from both sides.
-9x^{2}+8=-34x
Combine 8x^{2} and -17x^{2} to get -9x^{2}.
-9x^{2}+8+34x=0
Add 34x to both sides.
-9x^{2}+34x+8=0
Rearrange the polynomial to put it in standard form. Place the terms in order from highest to lowest power.
a+b=34 ab=-9\times 8=-72
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as -9x^{2}+ax+bx+8. To find a and b, set up a system to be solved.
-1,72 -2,36 -3,24 -4,18 -6,12 -8,9
Since ab is negative, a and b have the opposite signs. Since a+b is positive, the positive number has greater absolute value than the negative. List all such integer pairs that give product -72.
-1+72=71 -2+36=34 -3+24=21 -4+18=14 -6+12=6 -8+9=1
Calculate the sum for each pair.
a=36 b=-2
The solution is the pair that gives sum 34.
\left(-9x^{2}+36x\right)+\left(-2x+8\right)
Rewrite -9x^{2}+34x+8 as \left(-9x^{2}+36x\right)+\left(-2x+8\right).
9x\left(-x+4\right)+2\left(-x+4\right)
Factor out 9x in the first and 2 in the second group.
\left(-x+4\right)\left(9x+2\right)
Factor out common term -x+4 by using distributive property.
x=4 x=-\frac{2}{9}
To find equation solutions, solve -x+4=0 and 9x+2=0.
4x\left(x+3\right)-\left(4x-8\right)\left(1-x\right)=17x\left(x-2\right)
Variable x cannot be equal to any of the values 0,2 since division by zero is not defined. Multiply both sides of the equation by 4x\left(x-2\right), the least common multiple of x-2,x,4.
4x^{2}+12x-\left(4x-8\right)\left(1-x\right)=17x\left(x-2\right)
Use the distributive property to multiply 4x by x+3.
4x^{2}+12x-\left(12x-4x^{2}-8\right)=17x\left(x-2\right)
Use the distributive property to multiply 4x-8 by 1-x and combine like terms.
4x^{2}+12x-12x+4x^{2}+8=17x\left(x-2\right)
To find the opposite of 12x-4x^{2}-8, find the opposite of each term.
4x^{2}+4x^{2}+8=17x\left(x-2\right)
Combine 12x and -12x to get 0.
8x^{2}+8=17x\left(x-2\right)
Combine 4x^{2} and 4x^{2} to get 8x^{2}.
8x^{2}+8=17x^{2}-34x
Use the distributive property to multiply 17x by x-2.
8x^{2}+8-17x^{2}=-34x
Subtract 17x^{2} from both sides.
-9x^{2}+8=-34x
Combine 8x^{2} and -17x^{2} to get -9x^{2}.
-9x^{2}+8+34x=0
Add 34x to both sides.
-9x^{2}+34x+8=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-34±\sqrt{34^{2}-4\left(-9\right)\times 8}}{2\left(-9\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -9 for a, 34 for b, and 8 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-34±\sqrt{1156-4\left(-9\right)\times 8}}{2\left(-9\right)}
Square 34.
x=\frac{-34±\sqrt{1156+36\times 8}}{2\left(-9\right)}
Multiply -4 times -9.
x=\frac{-34±\sqrt{1156+288}}{2\left(-9\right)}
Multiply 36 times 8.
x=\frac{-34±\sqrt{1444}}{2\left(-9\right)}
Add 1156 to 288.
x=\frac{-34±38}{2\left(-9\right)}
Take the square root of 1444.
x=\frac{-34±38}{-18}
Multiply 2 times -9.
x=\frac{4}{-18}
Now solve the equation x=\frac{-34±38}{-18} when ± is plus. Add -34 to 38.
x=-\frac{2}{9}
Reduce the fraction \frac{4}{-18} to lowest terms by extracting and canceling out 2.
x=-\frac{72}{-18}
Now solve the equation x=\frac{-34±38}{-18} when ± is minus. Subtract 38 from -34.
x=4
Divide -72 by -18.
x=-\frac{2}{9} x=4
The equation is now solved.
4x\left(x+3\right)-\left(4x-8\right)\left(1-x\right)=17x\left(x-2\right)
Variable x cannot be equal to any of the values 0,2 since division by zero is not defined. Multiply both sides of the equation by 4x\left(x-2\right), the least common multiple of x-2,x,4.
4x^{2}+12x-\left(4x-8\right)\left(1-x\right)=17x\left(x-2\right)
Use the distributive property to multiply 4x by x+3.
4x^{2}+12x-\left(12x-4x^{2}-8\right)=17x\left(x-2\right)
Use the distributive property to multiply 4x-8 by 1-x and combine like terms.
4x^{2}+12x-12x+4x^{2}+8=17x\left(x-2\right)
To find the opposite of 12x-4x^{2}-8, find the opposite of each term.
4x^{2}+4x^{2}+8=17x\left(x-2\right)
Combine 12x and -12x to get 0.
8x^{2}+8=17x\left(x-2\right)
Combine 4x^{2} and 4x^{2} to get 8x^{2}.
8x^{2}+8=17x^{2}-34x
Use the distributive property to multiply 17x by x-2.
8x^{2}+8-17x^{2}=-34x
Subtract 17x^{2} from both sides.
-9x^{2}+8=-34x
Combine 8x^{2} and -17x^{2} to get -9x^{2}.
-9x^{2}+8+34x=0
Add 34x to both sides.
-9x^{2}+34x=-8
Subtract 8 from both sides. Anything subtracted from zero gives its negation.
\frac{-9x^{2}+34x}{-9}=-\frac{8}{-9}
Divide both sides by -9.
x^{2}+\frac{34}{-9}x=-\frac{8}{-9}
Dividing by -9 undoes the multiplication by -9.
x^{2}-\frac{34}{9}x=-\frac{8}{-9}
Divide 34 by -9.
x^{2}-\frac{34}{9}x=\frac{8}{9}
Divide -8 by -9.
x^{2}-\frac{34}{9}x+\left(-\frac{17}{9}\right)^{2}=\frac{8}{9}+\left(-\frac{17}{9}\right)^{2}
Divide -\frac{34}{9}, the coefficient of the x term, by 2 to get -\frac{17}{9}. Then add the square of -\frac{17}{9} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{34}{9}x+\frac{289}{81}=\frac{8}{9}+\frac{289}{81}
Square -\frac{17}{9} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{34}{9}x+\frac{289}{81}=\frac{361}{81}
Add \frac{8}{9} to \frac{289}{81} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{17}{9}\right)^{2}=\frac{361}{81}
Factor x^{2}-\frac{34}{9}x+\frac{289}{81}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{17}{9}\right)^{2}}=\sqrt{\frac{361}{81}}
Take the square root of both sides of the equation.
x-\frac{17}{9}=\frac{19}{9} x-\frac{17}{9}=-\frac{19}{9}
Simplify.
x=4 x=-\frac{2}{9}
Add \frac{17}{9} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}