Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{x+3}{\left(x-2\right)\left(x-1\right)}-\frac{x^{2}-5x+6}{3\left(x+3\right)}
Factor x^{2}-3x+2. Factor 3x+9.
\frac{\left(x+3\right)\times 3\left(x+3\right)}{3\left(x-2\right)\left(x-1\right)\left(x+3\right)}-\frac{\left(x^{2}-5x+6\right)\left(x-2\right)\left(x-1\right)}{3\left(x-2\right)\left(x-1\right)\left(x+3\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(x-2\right)\left(x-1\right) and 3\left(x+3\right) is 3\left(x-2\right)\left(x-1\right)\left(x+3\right). Multiply \frac{x+3}{\left(x-2\right)\left(x-1\right)} times \frac{3\left(x+3\right)}{3\left(x+3\right)}. Multiply \frac{x^{2}-5x+6}{3\left(x+3\right)} times \frac{\left(x-2\right)\left(x-1\right)}{\left(x-2\right)\left(x-1\right)}.
\frac{\left(x+3\right)\times 3\left(x+3\right)-\left(x^{2}-5x+6\right)\left(x-2\right)\left(x-1\right)}{3\left(x-2\right)\left(x-1\right)\left(x+3\right)}
Since \frac{\left(x+3\right)\times 3\left(x+3\right)}{3\left(x-2\right)\left(x-1\right)\left(x+3\right)} and \frac{\left(x^{2}-5x+6\right)\left(x-2\right)\left(x-1\right)}{3\left(x-2\right)\left(x-1\right)\left(x+3\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{3x^{2}+9x+9x+27-x^{4}+3x^{3}-2x^{2}+5x^{3}-15x^{2}+10x-6x^{2}+18x-12}{3\left(x-2\right)\left(x-1\right)\left(x+3\right)}
Do the multiplications in \left(x+3\right)\times 3\left(x+3\right)-\left(x^{2}-5x+6\right)\left(x-2\right)\left(x-1\right).
\frac{-20x^{2}+46x+15-x^{4}+8x^{3}}{3\left(x-2\right)\left(x-1\right)\left(x+3\right)}
Combine like terms in 3x^{2}+9x+9x+27-x^{4}+3x^{3}-2x^{2}+5x^{3}-15x^{2}+10x-6x^{2}+18x-12.
\frac{-20x^{2}+46x+15-x^{4}+8x^{3}}{3x^{3}-21x+18}
Expand 3\left(x-2\right)\left(x-1\right)\left(x+3\right).
\frac{x+3}{\left(x-2\right)\left(x-1\right)}-\frac{x^{2}-5x+6}{3\left(x+3\right)}
Factor x^{2}-3x+2. Factor 3x+9.
\frac{\left(x+3\right)\times 3\left(x+3\right)}{3\left(x-2\right)\left(x-1\right)\left(x+3\right)}-\frac{\left(x^{2}-5x+6\right)\left(x-2\right)\left(x-1\right)}{3\left(x-2\right)\left(x-1\right)\left(x+3\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(x-2\right)\left(x-1\right) and 3\left(x+3\right) is 3\left(x-2\right)\left(x-1\right)\left(x+3\right). Multiply \frac{x+3}{\left(x-2\right)\left(x-1\right)} times \frac{3\left(x+3\right)}{3\left(x+3\right)}. Multiply \frac{x^{2}-5x+6}{3\left(x+3\right)} times \frac{\left(x-2\right)\left(x-1\right)}{\left(x-2\right)\left(x-1\right)}.
\frac{\left(x+3\right)\times 3\left(x+3\right)-\left(x^{2}-5x+6\right)\left(x-2\right)\left(x-1\right)}{3\left(x-2\right)\left(x-1\right)\left(x+3\right)}
Since \frac{\left(x+3\right)\times 3\left(x+3\right)}{3\left(x-2\right)\left(x-1\right)\left(x+3\right)} and \frac{\left(x^{2}-5x+6\right)\left(x-2\right)\left(x-1\right)}{3\left(x-2\right)\left(x-1\right)\left(x+3\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{3x^{2}+9x+9x+27-x^{4}+3x^{3}-2x^{2}+5x^{3}-15x^{2}+10x-6x^{2}+18x-12}{3\left(x-2\right)\left(x-1\right)\left(x+3\right)}
Do the multiplications in \left(x+3\right)\times 3\left(x+3\right)-\left(x^{2}-5x+6\right)\left(x-2\right)\left(x-1\right).
\frac{-20x^{2}+46x+15-x^{4}+8x^{3}}{3\left(x-2\right)\left(x-1\right)\left(x+3\right)}
Combine like terms in 3x^{2}+9x+9x+27-x^{4}+3x^{3}-2x^{2}+5x^{3}-15x^{2}+10x-6x^{2}+18x-12.
\frac{-20x^{2}+46x+15-x^{4}+8x^{3}}{3x^{3}-21x+18}
Expand 3\left(x-2\right)\left(x-1\right)\left(x+3\right).