Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\left(x-9\right)\left(x+3\right)+\left(x+9\right)\times 7=\left(x+9\right)\times 7
Variable x cannot be equal to any of the values -9,9 since division by zero is not defined. Multiply both sides of the equation by \left(x-9\right)\left(x+9\right), the least common multiple of x+9,x-9.
x^{2}-6x-27+\left(x+9\right)\times 7=\left(x+9\right)\times 7
Use the distributive property to multiply x-9 by x+3 and combine like terms.
x^{2}-6x-27+7x+63=\left(x+9\right)\times 7
Use the distributive property to multiply x+9 by 7.
x^{2}+x-27+63=\left(x+9\right)\times 7
Combine -6x and 7x to get x.
x^{2}+x+36=\left(x+9\right)\times 7
Add -27 and 63 to get 36.
x^{2}+x+36=7x+63
Use the distributive property to multiply x+9 by 7.
x^{2}+x+36-7x=63
Subtract 7x from both sides.
x^{2}-6x+36=63
Combine x and -7x to get -6x.
x^{2}-6x+36-63=0
Subtract 63 from both sides.
x^{2}-6x-27=0
Subtract 63 from 36 to get -27.
x=\frac{-\left(-6\right)±\sqrt{\left(-6\right)^{2}-4\left(-27\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, -6 for b, and -27 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-6\right)±\sqrt{36-4\left(-27\right)}}{2}
Square -6.
x=\frac{-\left(-6\right)±\sqrt{36+108}}{2}
Multiply -4 times -27.
x=\frac{-\left(-6\right)±\sqrt{144}}{2}
Add 36 to 108.
x=\frac{-\left(-6\right)±12}{2}
Take the square root of 144.
x=\frac{6±12}{2}
The opposite of -6 is 6.
x=\frac{18}{2}
Now solve the equation x=\frac{6±12}{2} when ± is plus. Add 6 to 12.
x=9
Divide 18 by 2.
x=-\frac{6}{2}
Now solve the equation x=\frac{6±12}{2} when ± is minus. Subtract 12 from 6.
x=-3
Divide -6 by 2.
x=9 x=-3
The equation is now solved.
x=-3
Variable x cannot be equal to 9.
\left(x-9\right)\left(x+3\right)+\left(x+9\right)\times 7=\left(x+9\right)\times 7
Variable x cannot be equal to any of the values -9,9 since division by zero is not defined. Multiply both sides of the equation by \left(x-9\right)\left(x+9\right), the least common multiple of x+9,x-9.
x^{2}-6x-27+\left(x+9\right)\times 7=\left(x+9\right)\times 7
Use the distributive property to multiply x-9 by x+3 and combine like terms.
x^{2}-6x-27+7x+63=\left(x+9\right)\times 7
Use the distributive property to multiply x+9 by 7.
x^{2}+x-27+63=\left(x+9\right)\times 7
Combine -6x and 7x to get x.
x^{2}+x+36=\left(x+9\right)\times 7
Add -27 and 63 to get 36.
x^{2}+x+36=7x+63
Use the distributive property to multiply x+9 by 7.
x^{2}+x+36-7x=63
Subtract 7x from both sides.
x^{2}-6x+36=63
Combine x and -7x to get -6x.
x^{2}-6x=63-36
Subtract 36 from both sides.
x^{2}-6x=27
Subtract 36 from 63 to get 27.
x^{2}-6x+\left(-3\right)^{2}=27+\left(-3\right)^{2}
Divide -6, the coefficient of the x term, by 2 to get -3. Then add the square of -3 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-6x+9=27+9
Square -3.
x^{2}-6x+9=36
Add 27 to 9.
\left(x-3\right)^{2}=36
Factor x^{2}-6x+9. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-3\right)^{2}}=\sqrt{36}
Take the square root of both sides of the equation.
x-3=6 x-3=-6
Simplify.
x=9 x=-3
Add 3 to both sides of the equation.
x=-3
Variable x cannot be equal to 9.