Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{\left(x+3\right)\left(x-5\right)}{\left(x-5\right)\left(x+6\right)}+\frac{\left(x-4\right)\left(x+6\right)}{\left(x-5\right)\left(x+6\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x+6 and x-5 is \left(x-5\right)\left(x+6\right). Multiply \frac{x+3}{x+6} times \frac{x-5}{x-5}. Multiply \frac{x-4}{x-5} times \frac{x+6}{x+6}.
\frac{\left(x+3\right)\left(x-5\right)+\left(x-4\right)\left(x+6\right)}{\left(x-5\right)\left(x+6\right)}
Since \frac{\left(x+3\right)\left(x-5\right)}{\left(x-5\right)\left(x+6\right)} and \frac{\left(x-4\right)\left(x+6\right)}{\left(x-5\right)\left(x+6\right)} have the same denominator, add them by adding their numerators.
\frac{x^{2}-5x+3x-15+x^{2}+6x-4x-24}{\left(x-5\right)\left(x+6\right)}
Do the multiplications in \left(x+3\right)\left(x-5\right)+\left(x-4\right)\left(x+6\right).
\frac{2x^{2}-39}{\left(x-5\right)\left(x+6\right)}
Combine like terms in x^{2}-5x+3x-15+x^{2}+6x-4x-24.
\frac{2x^{2}-39}{x^{2}+x-30}
Expand \left(x-5\right)\left(x+6\right).
\frac{\left(x+3\right)\left(x-5\right)}{\left(x-5\right)\left(x+6\right)}+\frac{\left(x-4\right)\left(x+6\right)}{\left(x-5\right)\left(x+6\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x+6 and x-5 is \left(x-5\right)\left(x+6\right). Multiply \frac{x+3}{x+6} times \frac{x-5}{x-5}. Multiply \frac{x-4}{x-5} times \frac{x+6}{x+6}.
\frac{\left(x+3\right)\left(x-5\right)+\left(x-4\right)\left(x+6\right)}{\left(x-5\right)\left(x+6\right)}
Since \frac{\left(x+3\right)\left(x-5\right)}{\left(x-5\right)\left(x+6\right)} and \frac{\left(x-4\right)\left(x+6\right)}{\left(x-5\right)\left(x+6\right)} have the same denominator, add them by adding their numerators.
\frac{x^{2}-5x+3x-15+x^{2}+6x-4x-24}{\left(x-5\right)\left(x+6\right)}
Do the multiplications in \left(x+3\right)\left(x-5\right)+\left(x-4\right)\left(x+6\right).
\frac{2x^{2}-39}{\left(x-5\right)\left(x+6\right)}
Combine like terms in x^{2}-5x+3x-15+x^{2}+6x-4x-24.
\frac{2x^{2}-39}{x^{2}+x-30}
Expand \left(x-5\right)\left(x+6\right).