Solve for x
x = -\frac{77883}{25991} = -2\frac{25901}{25991} \approx -2.996537263
Graph
Share
Copied to clipboard
260\left(x+3\right)=\left(x+13\right)\times 0.09
Variable x cannot be equal to -13 since division by zero is not defined. Multiply both sides of the equation by 260\left(x+13\right), the least common multiple of x+13,260.
260x+780=\left(x+13\right)\times 0.09
Use the distributive property to multiply 260 by x+3.
260x+780=0.09x+1.17
Use the distributive property to multiply x+13 by 0.09.
260x+780-0.09x=1.17
Subtract 0.09x from both sides.
259.91x+780=1.17
Combine 260x and -0.09x to get 259.91x.
259.91x=1.17-780
Subtract 780 from both sides.
259.91x=-778.83
Subtract 780 from 1.17 to get -778.83.
x=\frac{-778.83}{259.91}
Divide both sides by 259.91.
x=\frac{-77883}{25991}
Expand \frac{-778.83}{259.91} by multiplying both numerator and the denominator by 100.
x=-\frac{77883}{25991}
Fraction \frac{-77883}{25991} can be rewritten as -\frac{77883}{25991} by extracting the negative sign.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}