Solve for m
m=\frac{3\left(x+178\right)}{7}
Solve for x
x=\frac{7m}{3}-178
Graph
Share
Copied to clipboard
3\left(x+3\right)+7\left(2m-5\right)=7\left(3m-5\right)-21\times 25
Multiply both sides of the equation by 21, the least common multiple of 7,3.
3x+9+7\left(2m-5\right)=7\left(3m-5\right)-21\times 25
Use the distributive property to multiply 3 by x+3.
3x+9+14m-35=7\left(3m-5\right)-21\times 25
Use the distributive property to multiply 7 by 2m-5.
3x-26+14m=7\left(3m-5\right)-21\times 25
Subtract 35 from 9 to get -26.
3x-26+14m=21m-35-21\times 25
Use the distributive property to multiply 7 by 3m-5.
3x-26+14m=21m-35-525
Multiply -21 and 25 to get -525.
3x-26+14m=21m-560
Subtract 525 from -35 to get -560.
3x-26+14m-21m=-560
Subtract 21m from both sides.
3x-26-7m=-560
Combine 14m and -21m to get -7m.
-26-7m=-560-3x
Subtract 3x from both sides.
-7m=-560-3x+26
Add 26 to both sides.
-7m=-534-3x
Add -560 and 26 to get -534.
-7m=-3x-534
The equation is in standard form.
\frac{-7m}{-7}=\frac{-3x-534}{-7}
Divide both sides by -7.
m=\frac{-3x-534}{-7}
Dividing by -7 undoes the multiplication by -7.
m=\frac{3x+534}{7}
Divide -534-3x by -7.
3\left(x+3\right)+7\left(2m-5\right)=7\left(3m-5\right)-21\times 25
Multiply both sides of the equation by 21, the least common multiple of 7,3.
3x+9+7\left(2m-5\right)=7\left(3m-5\right)-21\times 25
Use the distributive property to multiply 3 by x+3.
3x+9+14m-35=7\left(3m-5\right)-21\times 25
Use the distributive property to multiply 7 by 2m-5.
3x-26+14m=7\left(3m-5\right)-21\times 25
Subtract 35 from 9 to get -26.
3x-26+14m=21m-35-21\times 25
Use the distributive property to multiply 7 by 3m-5.
3x-26+14m=21m-35-525
Multiply -21 and 25 to get -525.
3x-26+14m=21m-560
Subtract 525 from -35 to get -560.
3x+14m=21m-560+26
Add 26 to both sides.
3x+14m=21m-534
Add -560 and 26 to get -534.
3x=21m-534-14m
Subtract 14m from both sides.
3x=7m-534
Combine 21m and -14m to get 7m.
\frac{3x}{3}=\frac{7m-534}{3}
Divide both sides by 3.
x=\frac{7m-534}{3}
Dividing by 3 undoes the multiplication by 3.
x=\frac{7m}{3}-178
Divide 7m-534 by 3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}