Solve for x
x\geq 7
Graph
Share
Copied to clipboard
3\left(x+3\right)\leq 5\left(2x-5\right)-15
Multiply both sides of the equation by 15, the least common multiple of 5,3. Since 15 is positive, the inequality direction remains the same.
3x+9\leq 5\left(2x-5\right)-15
Use the distributive property to multiply 3 by x+3.
3x+9\leq 10x-25-15
Use the distributive property to multiply 5 by 2x-5.
3x+9\leq 10x-40
Subtract 15 from -25 to get -40.
3x+9-10x\leq -40
Subtract 10x from both sides.
-7x+9\leq -40
Combine 3x and -10x to get -7x.
-7x\leq -40-9
Subtract 9 from both sides.
-7x\leq -49
Subtract 9 from -40 to get -49.
x\geq \frac{-49}{-7}
Divide both sides by -7. Since -7 is negative, the inequality direction is changed.
x\geq 7
Divide -49 by -7 to get 7.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}