Solve for x
x=\frac{\sqrt{41}-7}{2}\approx -0.298437881
x=\frac{-\sqrt{41}-7}{2}\approx -6.701562119
Graph
Share
Copied to clipboard
\left(x+4\right)\left(x+3\right)=2\times 5
Variable x cannot be equal to -4 since division by zero is not defined. Multiply both sides of the equation by 2\left(x+4\right), the least common multiple of 2,x+4.
x^{2}+7x+12=2\times 5
Use the distributive property to multiply x+4 by x+3 and combine like terms.
x^{2}+7x+12=10
Multiply 2 and 5 to get 10.
x^{2}+7x+12-10=0
Subtract 10 from both sides.
x^{2}+7x+2=0
Subtract 10 from 12 to get 2.
x=\frac{-7±\sqrt{7^{2}-4\times 2}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 7 for b, and 2 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-7±\sqrt{49-4\times 2}}{2}
Square 7.
x=\frac{-7±\sqrt{49-8}}{2}
Multiply -4 times 2.
x=\frac{-7±\sqrt{41}}{2}
Add 49 to -8.
x=\frac{\sqrt{41}-7}{2}
Now solve the equation x=\frac{-7±\sqrt{41}}{2} when ± is plus. Add -7 to \sqrt{41}.
x=\frac{-\sqrt{41}-7}{2}
Now solve the equation x=\frac{-7±\sqrt{41}}{2} when ± is minus. Subtract \sqrt{41} from -7.
x=\frac{\sqrt{41}-7}{2} x=\frac{-\sqrt{41}-7}{2}
The equation is now solved.
\left(x+4\right)\left(x+3\right)=2\times 5
Variable x cannot be equal to -4 since division by zero is not defined. Multiply both sides of the equation by 2\left(x+4\right), the least common multiple of 2,x+4.
x^{2}+7x+12=2\times 5
Use the distributive property to multiply x+4 by x+3 and combine like terms.
x^{2}+7x+12=10
Multiply 2 and 5 to get 10.
x^{2}+7x=10-12
Subtract 12 from both sides.
x^{2}+7x=-2
Subtract 12 from 10 to get -2.
x^{2}+7x+\left(\frac{7}{2}\right)^{2}=-2+\left(\frac{7}{2}\right)^{2}
Divide 7, the coefficient of the x term, by 2 to get \frac{7}{2}. Then add the square of \frac{7}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+7x+\frac{49}{4}=-2+\frac{49}{4}
Square \frac{7}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}+7x+\frac{49}{4}=\frac{41}{4}
Add -2 to \frac{49}{4}.
\left(x+\frac{7}{2}\right)^{2}=\frac{41}{4}
Factor x^{2}+7x+\frac{49}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{7}{2}\right)^{2}}=\sqrt{\frac{41}{4}}
Take the square root of both sides of the equation.
x+\frac{7}{2}=\frac{\sqrt{41}}{2} x+\frac{7}{2}=-\frac{\sqrt{41}}{2}
Simplify.
x=\frac{\sqrt{41}-7}{2} x=\frac{-\sqrt{41}-7}{2}
Subtract \frac{7}{2} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}