Solve for x
x = \frac{9}{5} = 1\frac{4}{5} = 1.8
Graph
Share
Copied to clipboard
3\left(x+3\right)=2\times 4x
Multiply both sides of the equation by 6, the least common multiple of 2,3.
3x+9=2\times 4x
Use the distributive property to multiply 3 by x+3.
3x+9=8x
Multiply 2 and 4 to get 8.
3x+9-8x=0
Subtract 8x from both sides.
-5x+9=0
Combine 3x and -8x to get -5x.
-5x=-9
Subtract 9 from both sides. Anything subtracted from zero gives its negation.
x=\frac{-9}{-5}
Divide both sides by -5.
x=\frac{9}{5}
Fraction \frac{-9}{-5} can be simplified to \frac{9}{5} by removing the negative sign from both the numerator and the denominator.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}