Solve for x
x = \frac{45}{2} = 22\frac{1}{2} = 22.5
Graph
Share
Copied to clipboard
6\left(x+3\right)+2=4\left(2x-4\right)-9
Multiply both sides of the equation by 12, the least common multiple of 2,6,3,4.
6x+18+2=4\left(2x-4\right)-9
Use the distributive property to multiply 6 by x+3.
6x+20=4\left(2x-4\right)-9
Add 18 and 2 to get 20.
6x+20=8x-16-9
Use the distributive property to multiply 4 by 2x-4.
6x+20=8x-25
Subtract 9 from -16 to get -25.
6x+20-8x=-25
Subtract 8x from both sides.
-2x+20=-25
Combine 6x and -8x to get -2x.
-2x=-25-20
Subtract 20 from both sides.
-2x=-45
Subtract 20 from -25 to get -45.
x=\frac{-45}{-2}
Divide both sides by -2.
x=\frac{45}{2}
Fraction \frac{-45}{-2} can be simplified to \frac{45}{2} by removing the negative sign from both the numerator and the denominator.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}