Solve for x
x = -\frac{675}{7} = -96\frac{3}{7} \approx -96.428571429
Graph
Share
Copied to clipboard
x+25=\left(x+5\right)\times \frac{\frac{5}{2}}{\frac{16}{5}}
Variable x cannot be equal to -5 since division by zero is not defined. Multiply both sides of the equation by x+5.
x+25=\left(x+5\right)\times \frac{5}{2}\times \frac{5}{16}
Divide \frac{5}{2} by \frac{16}{5} by multiplying \frac{5}{2} by the reciprocal of \frac{16}{5}.
x+25=\left(x+5\right)\times \frac{25}{32}
Multiply \frac{5}{2} and \frac{5}{16} to get \frac{25}{32}.
x+25=\frac{25}{32}x+\frac{125}{32}
Use the distributive property to multiply x+5 by \frac{25}{32}.
x+25-\frac{25}{32}x=\frac{125}{32}
Subtract \frac{25}{32}x from both sides.
\frac{7}{32}x+25=\frac{125}{32}
Combine x and -\frac{25}{32}x to get \frac{7}{32}x.
\frac{7}{32}x=\frac{125}{32}-25
Subtract 25 from both sides.
\frac{7}{32}x=-\frac{675}{32}
Subtract 25 from \frac{125}{32} to get -\frac{675}{32}.
x=-\frac{675}{32}\times \frac{32}{7}
Multiply both sides by \frac{32}{7}, the reciprocal of \frac{7}{32}.
x=-\frac{675}{7}
Multiply -\frac{675}{32} and \frac{32}{7} to get -\frac{675}{7}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}