Solve for x
x=10
x=-10
Graph
Share
Copied to clipboard
\left(6x+12\right)\left(x+2\right)+\left(6x-12\right)\left(x-2\right)=13\left(x-2\right)\left(x+2\right)
Variable x cannot be equal to any of the values -2,2 since division by zero is not defined. Multiply both sides of the equation by 6\left(x-2\right)\left(x+2\right), the least common multiple of x-2,x+2,6.
6x^{2}+24x+24+\left(6x-12\right)\left(x-2\right)=13\left(x-2\right)\left(x+2\right)
Use the distributive property to multiply 6x+12 by x+2 and combine like terms.
6x^{2}+24x+24+6x^{2}-24x+24=13\left(x-2\right)\left(x+2\right)
Use the distributive property to multiply 6x-12 by x-2 and combine like terms.
12x^{2}+24x+24-24x+24=13\left(x-2\right)\left(x+2\right)
Combine 6x^{2} and 6x^{2} to get 12x^{2}.
12x^{2}+24+24=13\left(x-2\right)\left(x+2\right)
Combine 24x and -24x to get 0.
12x^{2}+48=13\left(x-2\right)\left(x+2\right)
Add 24 and 24 to get 48.
12x^{2}+48=\left(13x-26\right)\left(x+2\right)
Use the distributive property to multiply 13 by x-2.
12x^{2}+48=13x^{2}-52
Use the distributive property to multiply 13x-26 by x+2 and combine like terms.
12x^{2}+48-13x^{2}=-52
Subtract 13x^{2} from both sides.
-x^{2}+48=-52
Combine 12x^{2} and -13x^{2} to get -x^{2}.
-x^{2}=-52-48
Subtract 48 from both sides.
-x^{2}=-100
Subtract 48 from -52 to get -100.
x^{2}=\frac{-100}{-1}
Divide both sides by -1.
x^{2}=100
Fraction \frac{-100}{-1} can be simplified to 100 by removing the negative sign from both the numerator and the denominator.
x=10 x=-10
Take the square root of both sides of the equation.
\left(6x+12\right)\left(x+2\right)+\left(6x-12\right)\left(x-2\right)=13\left(x-2\right)\left(x+2\right)
Variable x cannot be equal to any of the values -2,2 since division by zero is not defined. Multiply both sides of the equation by 6\left(x-2\right)\left(x+2\right), the least common multiple of x-2,x+2,6.
6x^{2}+24x+24+\left(6x-12\right)\left(x-2\right)=13\left(x-2\right)\left(x+2\right)
Use the distributive property to multiply 6x+12 by x+2 and combine like terms.
6x^{2}+24x+24+6x^{2}-24x+24=13\left(x-2\right)\left(x+2\right)
Use the distributive property to multiply 6x-12 by x-2 and combine like terms.
12x^{2}+24x+24-24x+24=13\left(x-2\right)\left(x+2\right)
Combine 6x^{2} and 6x^{2} to get 12x^{2}.
12x^{2}+24+24=13\left(x-2\right)\left(x+2\right)
Combine 24x and -24x to get 0.
12x^{2}+48=13\left(x-2\right)\left(x+2\right)
Add 24 and 24 to get 48.
12x^{2}+48=\left(13x-26\right)\left(x+2\right)
Use the distributive property to multiply 13 by x-2.
12x^{2}+48=13x^{2}-52
Use the distributive property to multiply 13x-26 by x+2 and combine like terms.
12x^{2}+48-13x^{2}=-52
Subtract 13x^{2} from both sides.
-x^{2}+48=-52
Combine 12x^{2} and -13x^{2} to get -x^{2}.
-x^{2}+48+52=0
Add 52 to both sides.
-x^{2}+100=0
Add 48 and 52 to get 100.
x=\frac{0±\sqrt{0^{2}-4\left(-1\right)\times 100}}{2\left(-1\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -1 for a, 0 for b, and 100 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\left(-1\right)\times 100}}{2\left(-1\right)}
Square 0.
x=\frac{0±\sqrt{4\times 100}}{2\left(-1\right)}
Multiply -4 times -1.
x=\frac{0±\sqrt{400}}{2\left(-1\right)}
Multiply 4 times 100.
x=\frac{0±20}{2\left(-1\right)}
Take the square root of 400.
x=\frac{0±20}{-2}
Multiply 2 times -1.
x=-10
Now solve the equation x=\frac{0±20}{-2} when ± is plus. Divide 20 by -2.
x=10
Now solve the equation x=\frac{0±20}{-2} when ± is minus. Divide -20 by -2.
x=-10 x=10
The equation is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}