Solve for x (complex solution)
x=\frac{5+\sqrt{47}i}{3}\approx 1.666666667+2.2852182i
x=\frac{-\sqrt{47}i+5}{3}\approx 1.666666667-2.2852182i
Graph
Share
Copied to clipboard
\left(6x-8\right)\left(x+2\right)-x\left(2+3x\right)=2x\left(3x-4\right)+2\times 4
Variable x cannot be equal to any of the values 0,\frac{4}{3} since division by zero is not defined. Multiply both sides of the equation by 2x\left(3x-4\right), the least common multiple of x,2\left(4-3x\right),3x^{2}-4x.
6x^{2}+4x-16-x\left(2+3x\right)=2x\left(3x-4\right)+2\times 4
Use the distributive property to multiply 6x-8 by x+2 and combine like terms.
6x^{2}+4x-16-2x-3x^{2}=2x\left(3x-4\right)+2\times 4
Use the distributive property to multiply -x by 2+3x.
6x^{2}+2x-16-3x^{2}=2x\left(3x-4\right)+2\times 4
Combine 4x and -2x to get 2x.
3x^{2}+2x-16=2x\left(3x-4\right)+2\times 4
Combine 6x^{2} and -3x^{2} to get 3x^{2}.
3x^{2}+2x-16=6x^{2}-8x+2\times 4
Use the distributive property to multiply 2x by 3x-4.
3x^{2}+2x-16=6x^{2}-8x+8
Multiply 2 and 4 to get 8.
3x^{2}+2x-16-6x^{2}=-8x+8
Subtract 6x^{2} from both sides.
-3x^{2}+2x-16=-8x+8
Combine 3x^{2} and -6x^{2} to get -3x^{2}.
-3x^{2}+2x-16+8x=8
Add 8x to both sides.
-3x^{2}+10x-16=8
Combine 2x and 8x to get 10x.
-3x^{2}+10x-16-8=0
Subtract 8 from both sides.
-3x^{2}+10x-24=0
Subtract 8 from -16 to get -24.
x=\frac{-10±\sqrt{10^{2}-4\left(-3\right)\left(-24\right)}}{2\left(-3\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -3 for a, 10 for b, and -24 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-10±\sqrt{100-4\left(-3\right)\left(-24\right)}}{2\left(-3\right)}
Square 10.
x=\frac{-10±\sqrt{100+12\left(-24\right)}}{2\left(-3\right)}
Multiply -4 times -3.
x=\frac{-10±\sqrt{100-288}}{2\left(-3\right)}
Multiply 12 times -24.
x=\frac{-10±\sqrt{-188}}{2\left(-3\right)}
Add 100 to -288.
x=\frac{-10±2\sqrt{47}i}{2\left(-3\right)}
Take the square root of -188.
x=\frac{-10±2\sqrt{47}i}{-6}
Multiply 2 times -3.
x=\frac{-10+2\sqrt{47}i}{-6}
Now solve the equation x=\frac{-10±2\sqrt{47}i}{-6} when ± is plus. Add -10 to 2i\sqrt{47}.
x=\frac{-\sqrt{47}i+5}{3}
Divide -10+2i\sqrt{47} by -6.
x=\frac{-2\sqrt{47}i-10}{-6}
Now solve the equation x=\frac{-10±2\sqrt{47}i}{-6} when ± is minus. Subtract 2i\sqrt{47} from -10.
x=\frac{5+\sqrt{47}i}{3}
Divide -10-2i\sqrt{47} by -6.
x=\frac{-\sqrt{47}i+5}{3} x=\frac{5+\sqrt{47}i}{3}
The equation is now solved.
\left(6x-8\right)\left(x+2\right)-x\left(2+3x\right)=2x\left(3x-4\right)+2\times 4
Variable x cannot be equal to any of the values 0,\frac{4}{3} since division by zero is not defined. Multiply both sides of the equation by 2x\left(3x-4\right), the least common multiple of x,2\left(4-3x\right),3x^{2}-4x.
6x^{2}+4x-16-x\left(2+3x\right)=2x\left(3x-4\right)+2\times 4
Use the distributive property to multiply 6x-8 by x+2 and combine like terms.
6x^{2}+4x-16-2x-3x^{2}=2x\left(3x-4\right)+2\times 4
Use the distributive property to multiply -x by 2+3x.
6x^{2}+2x-16-3x^{2}=2x\left(3x-4\right)+2\times 4
Combine 4x and -2x to get 2x.
3x^{2}+2x-16=2x\left(3x-4\right)+2\times 4
Combine 6x^{2} and -3x^{2} to get 3x^{2}.
3x^{2}+2x-16=6x^{2}-8x+2\times 4
Use the distributive property to multiply 2x by 3x-4.
3x^{2}+2x-16=6x^{2}-8x+8
Multiply 2 and 4 to get 8.
3x^{2}+2x-16-6x^{2}=-8x+8
Subtract 6x^{2} from both sides.
-3x^{2}+2x-16=-8x+8
Combine 3x^{2} and -6x^{2} to get -3x^{2}.
-3x^{2}+2x-16+8x=8
Add 8x to both sides.
-3x^{2}+10x-16=8
Combine 2x and 8x to get 10x.
-3x^{2}+10x=8+16
Add 16 to both sides.
-3x^{2}+10x=24
Add 8 and 16 to get 24.
\frac{-3x^{2}+10x}{-3}=\frac{24}{-3}
Divide both sides by -3.
x^{2}+\frac{10}{-3}x=\frac{24}{-3}
Dividing by -3 undoes the multiplication by -3.
x^{2}-\frac{10}{3}x=\frac{24}{-3}
Divide 10 by -3.
x^{2}-\frac{10}{3}x=-8
Divide 24 by -3.
x^{2}-\frac{10}{3}x+\left(-\frac{5}{3}\right)^{2}=-8+\left(-\frac{5}{3}\right)^{2}
Divide -\frac{10}{3}, the coefficient of the x term, by 2 to get -\frac{5}{3}. Then add the square of -\frac{5}{3} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{10}{3}x+\frac{25}{9}=-8+\frac{25}{9}
Square -\frac{5}{3} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{10}{3}x+\frac{25}{9}=-\frac{47}{9}
Add -8 to \frac{25}{9}.
\left(x-\frac{5}{3}\right)^{2}=-\frac{47}{9}
Factor x^{2}-\frac{10}{3}x+\frac{25}{9}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{5}{3}\right)^{2}}=\sqrt{-\frac{47}{9}}
Take the square root of both sides of the equation.
x-\frac{5}{3}=\frac{\sqrt{47}i}{3} x-\frac{5}{3}=-\frac{\sqrt{47}i}{3}
Simplify.
x=\frac{5+\sqrt{47}i}{3} x=\frac{-\sqrt{47}i+5}{3}
Add \frac{5}{3} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}