Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{x+2}{x^{2}-x-12}-\frac{1}{x}
Rewrite x^{2} as xx. Cancel out x in both numerator and denominator.
\frac{x+2}{\left(x-4\right)\left(x+3\right)}-\frac{1}{x}
Factor x^{2}-x-12.
\frac{\left(x+2\right)x}{x\left(x-4\right)\left(x+3\right)}-\frac{\left(x-4\right)\left(x+3\right)}{x\left(x-4\right)\left(x+3\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(x-4\right)\left(x+3\right) and x is x\left(x-4\right)\left(x+3\right). Multiply \frac{x+2}{\left(x-4\right)\left(x+3\right)} times \frac{x}{x}. Multiply \frac{1}{x} times \frac{\left(x-4\right)\left(x+3\right)}{\left(x-4\right)\left(x+3\right)}.
\frac{\left(x+2\right)x-\left(x-4\right)\left(x+3\right)}{x\left(x-4\right)\left(x+3\right)}
Since \frac{\left(x+2\right)x}{x\left(x-4\right)\left(x+3\right)} and \frac{\left(x-4\right)\left(x+3\right)}{x\left(x-4\right)\left(x+3\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{x^{2}+2x-x^{2}-3x+4x+12}{x\left(x-4\right)\left(x+3\right)}
Do the multiplications in \left(x+2\right)x-\left(x-4\right)\left(x+3\right).
\frac{3x+12}{x\left(x-4\right)\left(x+3\right)}
Combine like terms in x^{2}+2x-x^{2}-3x+4x+12.
\frac{3x+12}{x^{3}-x^{2}-12x}
Expand x\left(x-4\right)\left(x+3\right).
\frac{x+2}{x^{2}-x-12}-\frac{1}{x}
Rewrite x^{2} as xx. Cancel out x in both numerator and denominator.
\frac{x+2}{\left(x-4\right)\left(x+3\right)}-\frac{1}{x}
Factor x^{2}-x-12.
\frac{\left(x+2\right)x}{x\left(x-4\right)\left(x+3\right)}-\frac{\left(x-4\right)\left(x+3\right)}{x\left(x-4\right)\left(x+3\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(x-4\right)\left(x+3\right) and x is x\left(x-4\right)\left(x+3\right). Multiply \frac{x+2}{\left(x-4\right)\left(x+3\right)} times \frac{x}{x}. Multiply \frac{1}{x} times \frac{\left(x-4\right)\left(x+3\right)}{\left(x-4\right)\left(x+3\right)}.
\frac{\left(x+2\right)x-\left(x-4\right)\left(x+3\right)}{x\left(x-4\right)\left(x+3\right)}
Since \frac{\left(x+2\right)x}{x\left(x-4\right)\left(x+3\right)} and \frac{\left(x-4\right)\left(x+3\right)}{x\left(x-4\right)\left(x+3\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{x^{2}+2x-x^{2}-3x+4x+12}{x\left(x-4\right)\left(x+3\right)}
Do the multiplications in \left(x+2\right)x-\left(x-4\right)\left(x+3\right).
\frac{3x+12}{x\left(x-4\right)\left(x+3\right)}
Combine like terms in x^{2}+2x-x^{2}-3x+4x+12.
\frac{3x+12}{x^{3}-x^{2}-12x}
Expand x\left(x-4\right)\left(x+3\right).