Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{x+2}{\left(x-1\right)\left(x+5\right)}-\frac{3}{\left(x+1\right)\left(x+5\right)}
Factor x^{2}+4x-5. Factor x^{2}+6x+5.
\frac{\left(x+2\right)\left(x+1\right)}{\left(x-1\right)\left(x+1\right)\left(x+5\right)}-\frac{3\left(x-1\right)}{\left(x-1\right)\left(x+1\right)\left(x+5\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(x-1\right)\left(x+5\right) and \left(x+1\right)\left(x+5\right) is \left(x-1\right)\left(x+1\right)\left(x+5\right). Multiply \frac{x+2}{\left(x-1\right)\left(x+5\right)} times \frac{x+1}{x+1}. Multiply \frac{3}{\left(x+1\right)\left(x+5\right)} times \frac{x-1}{x-1}.
\frac{\left(x+2\right)\left(x+1\right)-3\left(x-1\right)}{\left(x-1\right)\left(x+1\right)\left(x+5\right)}
Since \frac{\left(x+2\right)\left(x+1\right)}{\left(x-1\right)\left(x+1\right)\left(x+5\right)} and \frac{3\left(x-1\right)}{\left(x-1\right)\left(x+1\right)\left(x+5\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{x^{2}+x+2x+2-3x+3}{\left(x-1\right)\left(x+1\right)\left(x+5\right)}
Do the multiplications in \left(x+2\right)\left(x+1\right)-3\left(x-1\right).
\frac{x^{2}+5}{\left(x-1\right)\left(x+1\right)\left(x+5\right)}
Combine like terms in x^{2}+x+2x+2-3x+3.
\frac{x^{2}+5}{x^{3}+5x^{2}-x-5}
Expand \left(x-1\right)\left(x+1\right)\left(x+5\right).
\frac{x+2}{\left(x-1\right)\left(x+5\right)}-\frac{3}{\left(x+1\right)\left(x+5\right)}
Factor x^{2}+4x-5. Factor x^{2}+6x+5.
\frac{\left(x+2\right)\left(x+1\right)}{\left(x-1\right)\left(x+1\right)\left(x+5\right)}-\frac{3\left(x-1\right)}{\left(x-1\right)\left(x+1\right)\left(x+5\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(x-1\right)\left(x+5\right) and \left(x+1\right)\left(x+5\right) is \left(x-1\right)\left(x+1\right)\left(x+5\right). Multiply \frac{x+2}{\left(x-1\right)\left(x+5\right)} times \frac{x+1}{x+1}. Multiply \frac{3}{\left(x+1\right)\left(x+5\right)} times \frac{x-1}{x-1}.
\frac{\left(x+2\right)\left(x+1\right)-3\left(x-1\right)}{\left(x-1\right)\left(x+1\right)\left(x+5\right)}
Since \frac{\left(x+2\right)\left(x+1\right)}{\left(x-1\right)\left(x+1\right)\left(x+5\right)} and \frac{3\left(x-1\right)}{\left(x-1\right)\left(x+1\right)\left(x+5\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{x^{2}+x+2x+2-3x+3}{\left(x-1\right)\left(x+1\right)\left(x+5\right)}
Do the multiplications in \left(x+2\right)\left(x+1\right)-3\left(x-1\right).
\frac{x^{2}+5}{\left(x-1\right)\left(x+1\right)\left(x+5\right)}
Combine like terms in x^{2}+x+2x+2-3x+3.
\frac{x^{2}+5}{x^{3}+5x^{2}-x-5}
Expand \left(x-1\right)\left(x+1\right)\left(x+5\right).