Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{x+2}{\left(x-5\right)\left(x+9\right)}+\frac{x+7}{\left(x-3\right)\left(x+9\right)}
Factor x^{2}+4x-45. Factor x^{2}+6x-27.
\frac{\left(x+2\right)\left(x-3\right)}{\left(x-5\right)\left(x-3\right)\left(x+9\right)}+\frac{\left(x+7\right)\left(x-5\right)}{\left(x-5\right)\left(x-3\right)\left(x+9\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(x-5\right)\left(x+9\right) and \left(x-3\right)\left(x+9\right) is \left(x-5\right)\left(x-3\right)\left(x+9\right). Multiply \frac{x+2}{\left(x-5\right)\left(x+9\right)} times \frac{x-3}{x-3}. Multiply \frac{x+7}{\left(x-3\right)\left(x+9\right)} times \frac{x-5}{x-5}.
\frac{\left(x+2\right)\left(x-3\right)+\left(x+7\right)\left(x-5\right)}{\left(x-5\right)\left(x-3\right)\left(x+9\right)}
Since \frac{\left(x+2\right)\left(x-3\right)}{\left(x-5\right)\left(x-3\right)\left(x+9\right)} and \frac{\left(x+7\right)\left(x-5\right)}{\left(x-5\right)\left(x-3\right)\left(x+9\right)} have the same denominator, add them by adding their numerators.
\frac{x^{2}-3x+2x-6+x^{2}-5x+7x-35}{\left(x-5\right)\left(x-3\right)\left(x+9\right)}
Do the multiplications in \left(x+2\right)\left(x-3\right)+\left(x+7\right)\left(x-5\right).
\frac{2x^{2}+x-41}{\left(x-5\right)\left(x-3\right)\left(x+9\right)}
Combine like terms in x^{2}-3x+2x-6+x^{2}-5x+7x-35.
\frac{2x^{2}+x-41}{x^{3}+x^{2}-57x+135}
Expand \left(x-5\right)\left(x-3\right)\left(x+9\right).
\frac{x+2}{\left(x-5\right)\left(x+9\right)}+\frac{x+7}{\left(x-3\right)\left(x+9\right)}
Factor x^{2}+4x-45. Factor x^{2}+6x-27.
\frac{\left(x+2\right)\left(x-3\right)}{\left(x-5\right)\left(x-3\right)\left(x+9\right)}+\frac{\left(x+7\right)\left(x-5\right)}{\left(x-5\right)\left(x-3\right)\left(x+9\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(x-5\right)\left(x+9\right) and \left(x-3\right)\left(x+9\right) is \left(x-5\right)\left(x-3\right)\left(x+9\right). Multiply \frac{x+2}{\left(x-5\right)\left(x+9\right)} times \frac{x-3}{x-3}. Multiply \frac{x+7}{\left(x-3\right)\left(x+9\right)} times \frac{x-5}{x-5}.
\frac{\left(x+2\right)\left(x-3\right)+\left(x+7\right)\left(x-5\right)}{\left(x-5\right)\left(x-3\right)\left(x+9\right)}
Since \frac{\left(x+2\right)\left(x-3\right)}{\left(x-5\right)\left(x-3\right)\left(x+9\right)} and \frac{\left(x+7\right)\left(x-5\right)}{\left(x-5\right)\left(x-3\right)\left(x+9\right)} have the same denominator, add them by adding their numerators.
\frac{x^{2}-3x+2x-6+x^{2}-5x+7x-35}{\left(x-5\right)\left(x-3\right)\left(x+9\right)}
Do the multiplications in \left(x+2\right)\left(x-3\right)+\left(x+7\right)\left(x-5\right).
\frac{2x^{2}+x-41}{\left(x-5\right)\left(x-3\right)\left(x+9\right)}
Combine like terms in x^{2}-3x+2x-6+x^{2}-5x+7x-35.
\frac{2x^{2}+x-41}{x^{3}+x^{2}-57x+135}
Expand \left(x-5\right)\left(x-3\right)\left(x+9\right).